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In this work the adsorption kinetic parameters for Fe3+ and Ni2+ ions by gyrolite are presented. Additionally, the 
adsorption mechanism was described by using pseudo first order and pseudo second order  equations. It was determined 
that the adsorption capacity of gyrolite and intrusion of heavy metals ions in its structure depends on reaction time and 
the pH value of adsorptive. It was observed that the incorporation of Fe3+ ions occurs more intensive than Ni2+ ions. It 
was found that in the acidic solution the intrusion of Fe3+ ions into gyrolite structure proceeds by two types of chemical 
reaction mechanisms: substitution and addition. Meanwhile, nickel ions were participated only in substitution reaction: 
gyrolite-Ca0 + Mex+ ↔ gyrolite-Me0 + Ca2+. It was observed that the pseudo second order model fit well for iron and 
nickel ions adsorption mechanism. It was estimated that the adsorption reactions are not reversible process and the 
crystal structure of gyrolite is stable. Moreover, synthetic adsorbent and the products of sorption were characterized by 
XRD, STA and FT-IR methods. 
Keywords: gyrolite, inorganic adsorbents, heavy metal ions adsorption, kinetics parameters. 

 
1. INTRODUCTION∗ 

Heavy metal ions are necessary for plants and animals 
if their concentration is low, however over and above this 
concentration becomes toxic [1]. The ions have been 
excessively released into the environment due to industrial 
activities (pigment manufacture, tanneries, metal plating, 
petroleum refining, battery manufacture, paint 
manufacture, pesticides, pigment manufacture and etc.) 
and have created a major concern [2 – 6]. Heavy metals are 
non-biodegradable waste often detected in industrial 
wastewaters therefore they must be removed before 
discharge [4, 7]. Nickel and iron are most of the dangerous 
toxic heavy metals for the environment and human health. 
The main sources of nickel element are electroplating, 
iron, steel industries, electrical, radio engineering and 
electronics manufacturing, chemical industry, plastics 
production, municipal sewage, coal burning [8]. It belongs 
to the second class of toxicity, characterizes low mutagenic 
and carcinogenic properties [8]. The iron is essential as a 
trace element. The main sources of this element are 
metallurgy, chemical, paint industry, textile dyeing and 
printing [8]. 

A large group of inorganic materials: zirconium 
phosphates, aluminosilicates, clay minerals, hydroxyapa-
tite, and others are used as adsorbents for heavy metals or 
radioactive contaminated water [9 – 13]. Before four 
decades S. Komarneni et al. [12 – 16] announced that it has 
been found new adsorbent – 1.13 nm tobermorite. During 
that timed it has been explored in detail the calcium silicate 
hydrates adsorption properties of synthesized compounds 
embedded in the crystal lattice extraneous atoms, which 
significantly increased their ability to adsorb heavy metal 
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ions from aqueous solutions [16 – 19]. Gyrolite is a mineral 
with most likely chemical formula 
NaCa16Si24O60(OH)8∙14H2O, it can be synthesized by 
hydrothermal treatment in CaO and SiO2 mixture [20]. The 
gyrolite was first synthesized by E. P. Flint et al. It should 
be underlined, that this synthesis route is a very complex 
and time consuming process [22 – 24]. 

The adsorption recognized as one of the most effective 
methods for the removal of heavy metals from the 
wastewaters [25]. Generally, the adsorption mechanism is 
determined by the pseudo first-order and pseudo-second 
order equations [26 – 30]. Mostly, kinetics have been 
described by the first-order equation was developed by 
S. Lagergren [30]. In this equation one can calculate the 
reaction rate constant and the equilibrium adsorption 
capacity. However, Y. S. Ho et al. [31 – 33] described 
sorption, which included chemisorption and provided a 
different idea to the second-order equation called a pseudo-
second-order rate expression. The equation has the 
following advantages: the sorption capacity, the rate 
constant of pseudo-second-order, and the initial sorption 
rate can all be determined from the pseudo-second-order 
equation without knowing any parameter beforehand. In 
previous studies [34 – 36], it was declared that gyrolite 
shows a very good cation exchange properties, i. e. the 
removal efficiency of Cu2+ ions was equal to 99.5 % and of 
Zn2+ and Cd2+ ions – 98 % – 99 % in alkaline medium. 
V. Kasperaviciute et al. [36] showed that in acidic medium 
gyrolite acts as chemosorbent,which can adsorb only 
41.48 % of Cu2+ ions.  

The aim of this work was determine adsorption  
kinetic parameters for Fe3+ and Ni2+ ions by gyrolite. 
Additionally, the adsorption mechanism was described by 
pseudo first-order equation and pseudo-second order 
equation. 
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 2. EXPERIMENTAL 

Fine-grained SiO2∙nH2O (“Stanchem”, ignition losses, 
7.84 %; specific surface area Sa = 1804 m2/kg by Blaine) 
and CaO (calcium hydroxide was burned 950 °C for 0.5 
hours; Sa = 1234 m2/kg; purity 98.83 % was used as 
starting materials. Hydrothermal synthesis of gyrolite has 
been carried out in autoclave under the saturated steam 
pressure at 200 °C; the duration of isothermal curing was 
48 hours, the molar ratio of primary mixture was 
CaO/SiO2 = 0.66. These synthesis conditions were chosen 
according to previously published data [22]. The products 
of the synthesis have been filtered, rinsed with ethyl 
alcohol to prevent carbonization of materials, dried at the 
temperature of 50 ºC ±5 ºC and sieved through a sieve with 
a mesh width of 50 μm 

Adsorption experiments were carried out at 25 °C 
temperature in the thermostatic absorber Grant SUB14 by 
stirring 1 g of gyrolite in 100 ml of Ni(NO3)2∙yH2O and 
Fe(NO3)3∙yH2O solutions containing 0.25 g Me/dm3 
(where Mex+ is Ni2+, Fe3+ ions respectively) for 60 min. 
The concentrations of heavy metal ions were determined 
using a Perkin-Elmer Analyst 4000 spectrometer. The 
value of pH was taken by Hanna instrument (Hi 9321, 
microprocessor pH meter). 

In order to determine kinetic parameters of adsorption 
reactions, a kinetic models have been developed and fitted 
for the adsorption process of the Ni2+ and Fe3+ ions into 
gyrolite. The S. Largergren model [30], assumes a first 
order adsorption kinetics and can be represented by the 
equation: 

)(1 te
t qqk

dt
dq

−= ,  (1) 

where qe and qt are adsorption capacities at equilibrium 
and at time te, respectively (mg·g–1), k1 is the rate constant 
of pseudo first order adsorption (min–1). After integration 
and applying boundary conditions t = 0 to t = te and qt = 0 
to qt = qe, the integrated form becomes: 

tkqqq ete 303.2
log)log( 1−=− .  (2) 

The pseudo second-order adsorption kinetic rate 
equation [31 – 33] is expressed as: 

2
2 )( te

t qqk
dt

dq
−= ,  (3) 

where k2 is the rate constant of the pseudo second order 
adsorption (g·mg–1·min–1). For the boundary conditions 
t=0 to t = te and qt = 0 to qt = qe, the integrated form of the 
equation becomes (the integrated rate law for the pseudo 
second-order reaction): 

t
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The X-ray powder diffraction (XRD) data were 
collected with a DRON-6 X-ray diffractometer with 
Bragg–Brentano geometry using Cu Kα radiation and 
graphite monochromator, operating with the voltage of 
30 kV and emission current of 20 mA. The step-scan 
covered the angular range 2°– 60° (2θ) in steps of 
2θ = 0.02°.  

Simultaneous thermal analysis (STA: differential 
scanning calorimetry – DSC and thermogravimetry – TG) 
was also employed for measuring the thermal stability and 
phase transformation of samples at a heating rate of 
15 °C/min, the temperature ranged from 30 °C up to 
1000 °C under air atmosphere. The test was carried out on 
a Netzsch instrument STA 409 PC Luxx. The ceramic 
sample handlers and crucibles of Pt-Rh were used. 

FT-IR spectra have been recorded out with the Perkin 
Elmer FT-IR Spectrum X system apparatus. Specimen 
were prepared by mixing 1 mg of the sample with 200 mg 
of KBr. The spectral analysis was performed in the range 
of 4000 cm–1

 – 400 cm–1 with spectral resolution of 1 cm–1. 

3. RESULTS AND DISCUSSION 
It was found that the adsorption of nickel ions proceeds 

intensively at the beginning of the process because after 30 s 
the amount of adsorbed ions by gyrolite was equal to 10 mg 
Ni2+/g when the initial concentration of Ni2+ ions was 0.25 g 
Ni2+/dm3 (Fig. 1, a). It was determined that the adsorption 
rate slightly increases by prolonging the experiment duration 
due to exchange in the quantity of incorporated Ni2+ ions. 
After 15 min, the equilibrium (20.84 mg Ni2+/g) is attained 
and the removal of mentioned ions is complete (Fig. 1, b). 

 
a 

 
b 

Fig. 1. Differential (a) and integral (b) kinetic curves of Ni2+ ions 
adsorption by gyrolite  

In this case, calcium ions are released from the crystal 
lattice of gyrolite into the solution when the charge of the 
host is changed in order to maintain its neutrality. Most of 
Ca2+ ions (16.7 mg Ca2+/g) are released in the first minutes 
of adsorption. Later on, the concentration of Ca2+ ions 
increases slightly with increase of adsorption duration. 
These results are in good agreement with the data of 
previuos work [11, 14, 34 – 36]. It was observed that the 
desorption process of calcium ions ended within 5 min 
(21.3 mg Ca2+/g) (Fig. 2, b). It should be underlined that 
pH value of medium rapidly increases when adsorbent was 
mixed with solution (Fig. 3). This change is attributed to 
the degree of release of Ca2+ ions from the structure of the 
gyrolite solid in solution during the reaction. Therefore, it 
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is no coincidence that the pH value of solution varied from 
5.39 to 7.68 only at the beginning of reaction (Fig. 3). It 
was determined that the intrusion of metal ions into 
adsorbent structures depends also on the pH of solution 
due to the extremely high and selective uptake of Fe3+ ions 
(Table 1). It was determined that the elimination of 
mentioned ions is completed within 30 s because all iron 
ions (24.5 mg Fe3+/g, i. e. 98 % – 99 %) are adsorbed. Also, 
the additional amount of Ca2+ ions (20.96 mg Ca2+/g) were 
realised from undefined structure of gyrolite crystal lattice, 
i. e. interlayers, which contain Ca2+ ions and H2O 
molecules (Table 1).  

 
a 

 
b 

Fig. 2. Differential (a) and integral (b) kinetic curves of Ca2+ ions 
concentration variation in acidic solution 

 
Fig. 3. Variation of acidic solution pH value 

Table 1. Variation of adsorbed Fe3+ ions, desorbed Ca2+ ions and 
pH during adsorption 

Time, 
min 

Adsorbed Fe3+ions Desorbed Ca2+ ions 

pH ∆X, 
mg/g 

∑X, 
mg/g 

∆X, 
mg/g 

∑X, 
mg/g 

0.5 24.49 24.49 18.02 18.02 2.10 

1 0.09 24.58 1.00 19.02 2.51 

2 0.10 24.69 1.50 20.52 2.59 

3 0.14 24.83 0.19 20.71 3.64 

5 0.03 24.86 0.07 20.78 4.79 

10 0.03 24.89 0.07 20.85 5.24 

15 0.05 24.93 0.10 20.95 6.09 

60 0.04 24.97 0.01 20.96 6.39 

In this case, the significant change of pH value in 
reaction medium was observed at the beginning of 
adsorption (3 min – 10 min) because the value of pH varied 
from 2.10 to 6.39 (Table 1).  

Thus, it is clearly seen that the adsorption of Ni2+ and 
Fe3+ ions from aqueous solutions by gyrolite is a quite 
complex process. Several authors [11, 13, 21] reported that 
the partial exchange Ca2+

 ↔ Mx+ proceeds at the same time 
in both directions, i. e. the cation exchange reaction of 
these ions is reversible. Meanwhile, our results have shown 
that gyrolite acts as a chemisorbent but not like usual 
adsorbent. In order to confirm this fact, after adsorption 
process gyrolite substituted with Ni2+ or Fe3+ ions was 
dried up and immersed in distilled water. It was proved 
that Mex+ ions did not appear in the solution after 
60 minutes at 25 °C. Thus, the latter process is irreversible. 

It was found that in the acidic solution the intrusion of 
Fe3+ ions into gyrolite structure proceeds by two types of 
chemical reaction mechanisms: substitution and addition. It 
was estimated that the ion exchange occurs between divalent 
and trivalent ions because Ca2+ ions were replaced 77 % of 
Fe3+ ions as remaining part of these ions are combined by 
gyrolite according to addition reaction. Meanwhile, nickel 
ions were participated only in substitution reaction:  
gyrolite-Ca0 + Mex+ ↔ gyrolite-Me0 + Ca2+. 

In order to determine adsorption kinetic parameters, 
the mentioned reactions were described by pseudo first-
order equation and pseudo-second order equation. 

A Largergren equation (2) was used to calculate the 
rate constants (k1) of reaction and the equilibrium 
concentrations (qe) of heavy metals (Table 2). It was found 
that the calculated qe(cal) values disagreed with the 
experimental qe(exp) values as well as the values of 
correlation coefficients (R2) are quite low: for Fe3+ ions – 
R2 = 0.48 and for Ni2+ ions – R2 = 0.96.  

 
a 

  
b 

Fig. 4. Pseudo first-order (a) and pseudo-second order (b) kinetic 
plots in acidic solutions 
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Fig. 5. X-ray diffraction pattern (a), DSC – TG curves (b) and FT-IR spectrum (c) of gyrolite. Duration of hydrothermal synthesis at 
200 °C is 48 h. Indexes: G – gyrolite 

 

 

 

 

 
a b c 

Fig. 6. X-ray diffraction pattern (a), DSC – TG curves (b) and FT-IR spectrum (c) of gyrolite substituted wit Fe3+ ions. Indexes:  
G – gyrolite 

 

Thus, the obtained results suggest that the pseudo first 
order equation did not fit well for iron and nickel ions 
adsorption mechanism description (Fig. 5, a, Table 2). 

By using the pseudo second order kinetics equation 
(4), the equilibrium adsorption capacity (qe(exp)) and the 
second order constants k2 (g·mg–1·min–1) was determined 
experimentally from the slope and intercept of plot t/qt 
versus t (Fig. 4, b). The values of the calculated qe(cal) and 
experimental qe(exp) are represented in Table 2. An 
agreement between qe(exp) experimental and qe(cal) 
calculated values for the pseudo second order model was 
observed. It was found that the Fe3+ ions adsorption rate 
(k2 = 2.30 g∙mg–1·min–1) 46 times is higher than the 
nickel ion (k2 = 0.05 g∙mg–1·min–1) (Table 2). These data 
agree with experimental results: Fe3+ ions adsorption 
reactions (Table 1) proceed more rapid than nickel ions 
(Fig. 1).  

Table 2. The kinetic parameters of the pseudo first and pseudo 
second order kinetic models 

Mex+ R2 qe(exp.), 
mg∙g–1 

qe(cal.), 
mg∙g–1 

k, 
g∙mg–1 min–1 

Pseudo first-order kinetic models 

Ni2+ 0.96 20.84 11.99 – 
Fe3+ 0.48 24.97 1.02 – 

Pseudo second-order kinetic models 

Ni2+ 0.99 20.84 21.60 0.05 
Fe3+ 1 24.97 24.94 2.30 

R2 – correlation coefficient; qe(exp) – the equilibrium adsorption 
capacity, mg·g–1, calculated from experimental data (Fig. 1, 
Table 1); qe(cal) – the equilibrium adsorption capacity, mg·g–1, 
calculated by using equations (3) and (4) of kinetic models. 

In order to identify the stability of adsorbent, gyrolite 
was characterized by numerous methods of instrumental 
analysis.  

X-ray diffraction analysis showed that after adsorption 
experiment the structure of gyrolite remains stable in the 
solution, although the intensity of typical diffraction peaks 
slightly decreases due to calcium ions desorption into the 
solution (Fig. 5, a; Fig. 6, a). It should be noted that no 
other compounds were observed after adsorption in XRD 
pattern. 

The XRD results were confirmed by STA and FT-IR 
analysis. In DSC curve were identified the same thermal 
effects in both samples (before and after the adsorption 
process): endothermic effect at 145 °C typical to water 
dehydration and exothermic effect at 853 °C – characterizes 
the formation of wollastonite (Fig. 5, b; Fig. 6, b).  

The FT-IR spectrum showed a sharp peak near 
3639 cm–1, which is visible only in the gyrolite spectrum 
and proves that clearly distinguished OH– [37] positions 
exist in the structure of this compound, which are 
connected only with Ca atoms and are not influenced by 
hydrogen bridge links. A wide absorption band near 
3457 cm–1 means the opposite that molecular water forms 
hydrogen bridge links in the interlayers. The bands in the 
range of 1636 cm–1 frequency are assigned to δ(H2O) 
vibrations and confirm this presumption. Also, it was 
determined a doublet near ~ 590 and ~ 612 cm–1 due to  
Si-O-Si bending vibrations, the band at ~ 973 cm–1 due to 
the Si-O stretching mode of nonbinding oxygens, and the 
band at ~ 645 cm–1 due to the Si-O-Si bonds [37] (Fig. 5, c; 
Fig. 6, c). 

CONCLUSIONS  
The adsorption capacity of gyrolite and intrusion of 

heavy metals ions in its structure depends on reaction time 
and the pH value of adsorptive. It was determined that the 
incorporation of Fe3+ ions occurs more intensive than Ni2+ 
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ions because after 30 s only 40 % of them (10 mg Ni2+/g) 
are intercalated into the structure of gyrolite, whereas Fe3+ 
ions – almost 98 % (24.49 mg Fe3+/g). 

It was found that in the acidic solution the intrusion of 
Fe3+ ions into gyrolite structure proceeds by two types of 
chemical reaction mechanisms: substitution and addition. 
Meanwhile, nickel ions were participated only in 
substitution reaction:  
gyrolite-Ca0 + Mex+ ↔ gyrolite-Me0 + Ca2+. 

It was observed that the pseudo second order model fit 
well for iron and nickel ions adsorption mechanism descrip-
tion because the calculated qe(cal) values agreed with the 
experimental qe(exp) values. By the way, it was found that the 
Fe3+ ions adsorption rate (k2 = 2.30 g∙mg–1∙min–1) 46 times is 
higher than the nickel ion (k2 = 0.05 g∙mg–1∙min–1). These 
data agree with experimental results. 

It was estimated that the adsorption reactions are not 
reversible process, because almost all heavy metal ions are 
chemisorbed by gyrolite. 

It was found that the crystal structure of gyrolite is 
stable in acidic solutions and its stability does not depend 
on examined adsorption conditions (60 min, 25 °C) and the 
concentration of heavy metals ions. 
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