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The draping of 2D textile fabrics is an important concern in the 3D composite parts manufacturing. The existing fitting 

algorithms for draping simulation are difficult to make a trade-off between flexibility, speed and accuracy. In the present 

work, a novel fishnet algorithm based on geometry information (GIB-fishnet algorithm) is proposed. Firstly, the fabric 

deformation modes during the draping process are analyzed, then several fundamental assumptions for draping 

simulation are proposed. Based on these assumptions and the theory of kinematic draping simulation, the GIB-fishnet 

algorithm is introduced, in this algorithm, geometry information of the surface such as tangent vector and normal 

curvature are used to determine the position of the current node. The use of the geometry information simplifies the 

mapping calculation and improves the computational accuracy. Two geometric algorithms for computing surface/surface 

intersection and seeking the shortest path on the surface, which are needed in the GIB-fishnet algorithm, are also studied 

in this paper. Finally, the simulation results of draping on three types of surfaces generated by different algorithms are 

compared, and the accuracy, speed and stability of the GIB-fishnet algorithm are verified.  

Keywords: composite manufacturing; textile draping; geometry information; fishnet algorithm. 

 

1. INTRODUCTION
∗

 

Owing to their outstanding mechanical and structural 

properties, composite materials have been widely used in 

the aerospace industry. The design and manufacturing 

technologies of composite materials receive more and 

more attentions from researchers [1, 2]. While 3D weaving 

and braiding technologies used for direct manufacturing 

3D composite parts are still immature and expensive, 

hence the 3D reinforcements are mainly obtained by 

draping of 2D textile fabrics [3, 4]. During the draping 

process, textile can adapt the complex 3D surface of the 

mold through yarn deformation and redistribution which 

bring great influence on the manufacturability and 

mechanical performance of the final composite products, 

so fabric draping study bears important theoretical and 

practical significance. 

Computer simulation is an effective method for 

prediction of fabric draping, since it not only guides the 

draping operation, but also serves as a precondition of the 

simulation analysis of manufacturing processes and 

mechanical performance. Using the manufacturing process 

simulation of liquid composite molding (LCM) for a 

radome as an example, as shown in Fig. 1 [5]. The 

geometry model of the radome should be built firstly, then 

the draping simulation is conducted to obtain the yarn 

distribution parameters, such as local shear angle and local 

thickness and so on, based on those parameters, local 

permeability distribution can be computed, lastly, the 

filling process is simulated to evaluate the 

manufacturability of this radome. As can be seen from the 

example, the draping simulation of textile plays a function 
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of connecting in the total manufacturing process analysis, 

it's a bridge of information exchange between design 

parameters (geometry model) and manufacturing analysis 

(mold-filling parameters prediction). 

Geometry Modeling

Draping Simulation

Permeability Distribution

Filling Simulation

Discreting geometry

Relationship between

permeability and shear angle

Solving Darcy`s law

Filling time, velocity

Local shear angle, 

fiber volume fraction, 

thickness

Local permeability

 

Fig. 1. Process of manufacturing simulation for a radome 

Methods of draping simulation can be broadly grouped 

into two categories. First are the kinematic methods which 

essentially fit a flat fabric to the desired surface using 

mapping techniques [6 – 16]. This group wins the wide 

attention because of their special advantages such as high 

stability and flexibility. The second group is based on 

Finite Element techniques. The textile fabric is modeled as 

continuous medium, FEM is used to simulate the 

deformation process during fabric draping, so the time 

histories of stress and strain of fabric can be predicted to 

optimize the draping method [17 – 20]. 
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Mack and Taylor [6] firstly discussed the draping 

simulation method, they defined several basic assumptions 

for the model of woven cloth, and then proposed an 

algorithm, named fishnet algorithm, for predicting the 

woven draping. Based on the fishnet algorithm, Robertson et 

al. [7, 8] adjusted those basic assumptions to improve the 

prediction accuracy for sphere and cone, and proved the 

convergence through grid refinement of the textile. Van Der 

Weeën [9] extended this algorithm to arbitrary curved 

surfaces, he assumed that the yarns are placed on the surface 

along geodesic curves, then used the shooting method to 

determine the geodesic edge. Aono et al. [10] analyzed the 

influence of boundary conditions on simulation results of 

fishnet algorithm, presented a new method for specifying the 

boundary conditions to reduce the computational complexity 

and avoid the uncalculated regions. Trochu et al. [11] used 

kriging technique to generate a differentiable parametric 

model for complex surface, in this model the fishnet 

algorithm could perform fairly well even with relatively 

coarse mesh. Wang et al. [12] analyzed yarn slippage which 

is neglected in fishnet algorithm. 

Compared with the second group of methods, the 

kinematic methods are more easily implemented and have 

good stability. However, the demands of accuracy and 

speed of the algorithm have not been satisfied very well. 

The basic fishnet algorithm considers yarn path between 

two adjacent nodes as straight line which causes a low 

accuracy to draping simulation of the curved surface. The 

geodesic fishnet algorithm determines the position of the 

current node by a series of geodesic line seeking 

calculations which are analytically intractable and time 

consuming, so it is rarely applied to simulate the draping of 

complex surfaces. The mosaic algorithm is a simplified 

version of fishnet algorithm which is based on a 

representation of the surface by an assembly of flat 

triangles, so the accuracy of the mosaic algorithm mainly 

depends on the discrete degree of the surface, a larger 

number of elements are needed for accurate approximation 

of the surface curvature, while the speed of calculating will 

slow down. In an effort to improve the efficiency and 

precision of the draping simulation, a novel fishnet 

algorithm based on the geometry information (GIB-fishnet 

algorithm) is presented in the current paper. GIB-fishnet 

algorithm transforms the node position determination 

problem into a series of surface/surface intersection 

problems with the use of geometry information such as 

normal vector and curvature, so the influence of the 

surface presentation on the simulation accuracy is reduced 

and the intensive computation is avoided. Comparisons 

between the GIB-fishnet algorithm and the existing 

algorithms by simulations of draping on several types of 

doubly-curved surfaces are also conducted in this paper. 

2. DEFORMATION MODES OF TEXTILE 

FABRIC 

Essentially, drape is the deformation of 2D fabrics 

caused by gravity, drape pressure and friction for 

adaptation of the fabrics on the mold surface, the following 

deformation modes can occur for one single textile layer: 

shearing, straightening, wrinkling, stretching and slipping, 

as shown in Fig. 2.  

Fabric shear occurs if the directions of applied tensile 

forces don't coincide with the orientations of the yarn axes. 

The yarn orientations change until the yarn axes coincide 

with the directions of applied forces, or until a fabric 

specific maximum shear angle (locking angle) is achieved. 

Locking angles observed from experiments for various 

glass fiber woven fabrics are in the range between 15° and 

35°. In case of fiber locking, the fabric starts to wrinkle 

due to the local shear stresses. Yarn straightening under 

tensile load in general is the deformation mode to occur 

first, while this effect is negligible for most low-crimp 

textile architectures due to the high elastic modulus of 

fibers. Yarn slippage usually only occurs at sharp edges or 

corners of the mold surface. From the parametric study 

carried by Chen and Govindaraj [21], we can find that the 

draping behavior is mainly determined by shear 

deformation because of the fabric's high elastic modul-us 

and low shear modulus. In consideration of this, the 

following assumptions can be made for draping simulation: 

(i) No slippage occurs at a crossing when the fabric is 

deformed; (ii) The yarn is inextensible; (iii) Warp and weft 

yarns can rotate frictionless around the cross point; (iv) 

Diameter of yarn and thickness of fabric are both 

negligible. The draping simulation algorithms based on 

those assumptions are collectively named fishnet 

algorithm. 

 

Fig. 2. Illustration of fabric deformation modes 

3. THEORY OF KINEMATIC DRAPE 

SIMULATION 

Each point x on the mold surface can be described 

parametrically in surface coordinates ui (i = 1, 2): 

),(
21

uuxx = ,    (1) 

where, x = (x1, x2, x3). 

Elementary arc lengths on the surface are given in the 

first fundamental form of the surface: 
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The two families of mutually orthogonal yarns of the 

fabric are described by coordinates vi (i = 1, 2) running in 

the yarn directions, and the elementary arc lengths on the 

deformed textile are given by 

( ) jijiij vdvdEsd 2
2

+= δ  , (4) 

where δ is Kroneker delta and Eij are the components of  

the Green-Lagrange tensor, based on the assumptions (ii) 

and (iii), we have 
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where α is shear angle. 

For deposition of the textile on the surface, equations 

(2) and (4) are equal: 
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in equation (7) gives 
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For solving equations (10), the initial fabric 

orientation, which is defined by a starting point on the 

surface and two curves along which the warp and weft will 

be fitted, should be preliminary determined. The two 

curves could be geodesics on the surface. 

4. GEOMETRY INFORMATION BASED 

FISHNET ALGORITHM 

A novel method for determining the positions of fabric 

nodes is described in this section, with this method, 

intensive computation needed for the existing draping 

algorithm is reduced, and the precision of the simulation is 

improved with the use of geometry information. 

4.1. Mapping methodology 

Mapping the flat fabric to the 3D surface is shown in 

Fig. 3. Suppose that the step distances of yarn in the weft 

and warp directions are both d, the undeformed fabric is 

shown in Fig. 3, a, and the fitted fabric on the mold surface 

after draping process is shown in Fig. 3, b. 

At the start of mapping, the nodal coordinates of yarns 

v1 = 0 and v2 = 0 on the surface are already known, other 

nodes are determined one by one from the known nodal 

coordinates. For example, given the coordinates of nodes 

(i, j – 1) and (i – 1, j) as shown in Fig. 3, b, the coordinates 

of node (i, j) named "current node" can be generated based 

on the assumption (ii) described in section 2. The existing 

two algorithms for position determination of node (i, j) are 

respectively basic fishnet algorithm and geodesic 

algorithm. It is well known that a point on a surface has 

both position information and vector information, while 

the two algorithms mentioned above merely make use of 

the position information of nodes (i, j – 1) and (i – 1, j). Due 

to the characteristics of material and manufacturing 

process, the surfaces of composite parts have a shape of 

flat or small curvature, and the size of parts (m) is much 

larger than the fabric grid (mm), so the shear angles of 

neighboring grids on the fitted fabric are very close to each 

other, therefore the method described below can be used to 

determine the coordinates of the current node. 

 

 

a b 

Fig. 3. Illustration of fabric mapping: a – undeformed fabric;  

b – mapping of the fabric to a surface 

Determination of the position of the current node is 

shown in Fig. 4. The filled circles A, B and C indicate the 

known nodes (i – 1, j – 1), (i – 1, j) and (i, j – 1). The solid 

line curve segments AB and AC indicate the yarn paths 

between node A and nodes B, C on the surface, the paths 

are also generated from the previous calculations, so the 

unit tangent vectors of both paths at point A, 
1
r

r

 and 
2
r

r

 

shown in Fig. 4, can be obtained. 

 

Fig. 4. Determination of current node 

The hollow circle D shown in Fig. 4 indicates the 

current node (i, j), the hollowline curve segments CD and 

BD indicate yarn paths between node D and nodes B, C on 

the surface, the paths are still unknown. Supposing the unit 

tangent vectors of CD and BD at points C and B are 
3
r

r

, 
4
r

r

 

as shown in Fig. 4, the following approximate equations 

can be proposed based on the previous analysis: 

2413
, rrrr

rrrr

≈≈ .   (11) 

So 
1
r

r

 and 
2
r

r

 can be used as the approximate values of 
3
r

r

 

and 
4
r

r

, then the normal curvatures of the surface at B and 

C in the directions 
3
r

r

 and 
4
r

r

 can be generated by 

( ) rrS
n

rr

⋅=κ ,  (12) 

where S is the shape operator. Since the fabric grid is 

relatively small, the curvatures of the whole curve segment 

can be supposed as a constant value κn, then the curve 

segments CD and BD become two circular arcs with the 

radiuses of 1/κnc and 1/κnb, so the node (i, j) synchronously 
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lies on two spherical surfaces expressed by equations (13) 

and (14): 

( ) ( ) ( ) 22

,1,

2

,1,

2
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( ) ( ) ( ) 22

1,,

2

1,,

2
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where lx (x = b, c) indicate the straight-line distances 

between node (i, j) and nodes (i, j – 1), (i – 1, j), as shown 

in Fig. 5, which can be computed by 

cbx
d

l
nx
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x
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2
sin2 == κ
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After simultaneously solving equations (13), (14) and 

the equation of mold surface, the coordinates of node (i, j) 

can be determined, then the yarn paths CD and BD can be 

obtained by the geodesic line generation algorithm which 

will be described later in detail. Repeat the above process 

until the whole surface is covered. 

1

nx
κ

 

Fig. 5. Straight-line distance between D and B, C 

In the above method, geometry information including 

both position information and vector information at the 

neighboring nodes is fully used for determining the current 

node position, so it is named geometry information based 

fishnet algorithm (GIB-Fishnet algorithm), its calculation 

flow is shown in Fig. 6. 

r

r

r

r

r

r

r

r

 

Fig. 6. Calculation flow of GIB-Fishnet algorithm 

4.2. Surface/Surface intersection algorithm 

Simultaneously solving the equations (13), (14) and 

the equation of mold surface is essentially a problem of 

finding the intersection points of three surfaces which are 

two spheres and the mold surface respectively. The two 

spherical surfaces are expressed by equations (13) and 

(14), the intersection of the two spheres is a circle which is 

placed on the plane:  

HGzFyEx =++ ,   (16) 

where 
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So the intersection circle can be expressed by 
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Therefore, the problem of three surfaces intersection 

becomes a problem of curve/surface intersection problem. 

Supposing the mold surface is expressed by m × n degree 

NURBS surface: 
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where the ci,j are control points, the wi,j are weights, N is a 

B-spline basis function, Cu and Cv are the number of 

control points along the u and v axes, respectively. 

Substituting equation (19) into equation (18), we 

obtain 
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where r(u, v) = (x(u, v), y(u, v), z(u, v)), F1 and F2 are both 

curve equations. The system of non-linear equations (20) 

can be solved by the Newton-Raphson method. 

Assuming the first partial derivatives of the NURBS 

surface (19) with respect to variables u and v exist, let (u(k), 

v(k)) denote the pair of variables at the k-th iteration, we can 

get the following relationship between (k + 1)-th pair and 

the k-th pair:  
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The initial condition defines the first approximated 

point at a position distance duv in uv space from the starting 

point in the direction ra = (ua, va) as follows: 
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The distance duv is approximated by 

Rdd
xyzuv

= , (25) 

where R is the ratio of the length of a unit vector 
xyz

V
~

 in 

xyz space to the length of the corresponding vector Vuv in 

uv space. 
xyz

V
~

 is given as a parameter at the starting point. 

Once a new point is calculated, it is updated every time  by 
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~
PPPPV −−=

−−xyz
, (26) 

where P–1 = (x–1, y–1, z–1) and P0 = (x0, y0, z0) indicate 

previous point and current point respectively. Vuv is 

obtained by the orthonormal projection of 
xyz

V
~

 onto the 

tangent plane at P0. 

The condition to finish iterative process is given as 

follows: 

( ) ( ) ε<+
++++ )1()1(

2
)1()1(

1 ,,

kkkk
vuFvuF , (27) 

where ε is a small positive constant. 

4.3. The shortest path between two points on a 

surface 

After obtaining the position of the current node, the 

yarn paths on the mold surface between the neighboring 

nodes need to be determined. The generation of yarn paths 

CD and BD shown in Fig. 4 can be seen as a problem of 

seeking the shortest path between two points on a surface. 

Assuming the mold surface (19) is regular and non-

periodic, Wolter [22] has proved the existence of the 

shortest path between two points on the surface, and the 

path is a geodesic line. 

Let C be an arc length parameterized regular curve on 

surface (19) which passes through point P and is denoted 

by 

))()),(()( svsus rr = . (28) 

Let t be a unit tangent vector of C at point P, n be a unit 

normal vector of C at point P, N be a unit normal vector of 

mold surface (19) and w be a unit vector perpendicular to t 

in the tangent plane defined by N × t. The curvature vector 

κ of C into w component κg is called geodesic curvature 

vector, the geodesic curvature can be expressed by 
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which can be transformed to the following equation after 

deducing: 
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where i
ijΓ  (i, j, k = 1, 2) denote Christoffel symbols 
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where E, F, G are coefficients of the first fundamental 

form of the surface. 

According to the definition of geodesic path, geodesics 

are curves of zero geodesic curvature. So the differential 

equation of geodesics can be described by 

0=
g

κ , (32) 

Substituting equation (30) into equation (32), we 

obtain a system of second order ordinary differential 

equations which can be rewritten as a system of first order 

ordinary differential equations: 

p
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2 qpqp

ds

dq
Γ−Γ−Γ−= . (36) 

Since the four boundary conditions for solving the 

system of four first order ordinary differential equations 

(33) to (36) are given at two points which are respectively 

the start (node B or C in Fig. 4) and the end (node D in 

Fig. 4) of the yarn segment, this is a boundary-value 

problem (BVP). General methods for the solutions of two-

point BVPs can be found in [23, 24]. 

The system of differential equations (33) – (36) can be 

written in vector form for convenience. If we set 
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the equations (33) – (36) can be written as 

βα === )(,)(),,( BAsg
ds

d
yyy

y
 . (38) 

A commonly used approach to the numerical solution 

of BVP is named relaxation method or finite difference 

method, this method starts with an initial guess and 

improves the solution iteratively. 

Let us consider a mesh of points satisfying A = s1 < s2 < 

... < sm = B, then the four first order differential equations 

(38) can be approximated by the trapezoidal rule 
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  (39) 

with boundary conditions: 

βα ==
m

YY ,
1

,  (40) 

where Yk and Gk are the approximations of y(sk) and g(sk), 

Y1 and Ym  totally have 4 known components. Equation (39) 

forms a system of 4(m – 1) nonlinear algebraic equations 

with 4m unknowns, the remaining 4 equations come from 

boundary conditions (40). 

Let's refer to equation (39) as 
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and boundary conditions (40) as 
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here n1 + n2 = 4. Since we know the position of each 

boundary point on the geodesic segment, the parameters of 

equations (43) can be given by 
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Then we have 4m equations: 
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Equations (45) can be computed by quadratically 

convergent Newton iteration, if a sufficiently accurate 

starting vector Y
(0) = (Y1

T, Y2
T, ..., Ym

T)T is provided. The 

Newton iteration scheme is given by 
)()()1( iii

YYT Δ+=
+ ; (46) 

)()()(
][

iii
FYJ −=Δ , (47) 

where [J(i)] is the 4m × 4m Jacobian matrix of F
(i) with 

respect to Y(i). 

Since Fk are evaluated using information from points k 

and k – 1, for non-boundary equations we only need to 

evaluate 
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for boundary points, we evaluate 
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Therefore the Jacobian matrix has the following block 

structure: 
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where Ak Bk (k = 2, 3, ..., m) are 4 × 4 submatrices obtained 

from equation (48), B1 and Am+1 are 2 × 4 submatrices 

calculated from equation (49).  

Substituting equations (45) and Jacobian matrix (50) 

into equation (47), we can get the correction vector YΔ  as 

the following form: 

( )T
mmmm

qpvuqpvu ΔΔΔΔΔΔΔΔΔ ,,,...,,,,,
1111

=Y .  (51) 

To achieve more stability, our method employs a step 

correction procedure: 
)()()1( iii

YYY Δ+=
+

µ ,  (52) 

where 0 < μ ≤ 1 the value of μ should make the following 

equation hold: 
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where ||ΔY||1 is a scaled vector norm and defined as 
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here Mu, Mv, Mp, Mq are the scale factors for each variable 

in this work we set Mu = Mv = 1, Mp = Mq = 10. The 

iteration is terminated when the ||ΔY||1 is small enough. 

5. SIMULATION EXAMPLES AND 

DISCUSSION 

5.1. Spherical surface 

Since the analytical solution is available, the 

simulation of draping of textile fabric on a spherical 

surface is a benchmark for assessing the performance of 

the algorithm. Because of the symmetry, an octant of the 

sphere is used to be draped on, the simulation result 

obtained by GIB-fishnet algorithm is shown in Fig. 7, 

where the Boundary 1 and Boundary 2 indicate the 

boundary conditions v1 = 0 and v2 = 0.  

From the geometric characteristics of the spherical 

surface, the analytic solution can be obtained conveniently 

[9], and the draping simulation was also conducted by 

different fishnet algorithms [9 – 11]. In Fig. 7, the dotted 

line connects the nodes with index i = j on which the 

maximal shear angles of their spherical polar angles are 

achieved. The relationship between the maximal shear 

angle and spherical polar angle is shown in Fig. 8. 

 

Fig. 7. Simulation result of draping on an octant of a sphere using 

GIB-fishnet algorithm 
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Fig. 8. Relationship between maximal shear and spherical polar 

angle 

As can be seen from Fig. 8, mosaic algorithm has less 

accuracy. Compared to other algorithms, a larger 
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difference can be found between the simulation results of 

mosaic algorithm and analytic mdethod, and uncertain 

errors appear at different nodes. The reason is  that mosaic 

algorithm disperses the surface with plane patches, the 

discrete forms and degrees of different regions depend on 

the surface local characteristics and discrete method, 

simulation of draping on the discrete surface will lead to an 

imprecise result with random errors, while the errors 

decrease with the reduction of the plane patch size. The 

basic fishnet algorithm considers the yarn segment 

between adjacent nodes as straight line, since the 

curvatures of spherical surface are equal everywhere, the 

errors of basic fishnet algorithm are equal on every node. 

Geodesic algorithm improves the simulation result of the 

basic algorithm, while it is impossible to achieve ideal 

value. On a spherical surface, since the normal curvatures 

of all nodes computed from equation (12) are equal, the 

GIB-fishnet algorithm generates the identical result as the 

analytical solution. 

Fig. 9 shows the relationship between simulation time 

and grid size of textile, where the plane patch size for 

mosaic algorithm is 0.25d. GIB-fishnet algorithm has a 

higher computation speed than the geodesic algorithm, 

because it avoids the intensive computation during the 

geodesic seeking, while it is much slower than the other 

three algorithms because the geometric algorithms 

described in 4.2 and 4.3 are time-consuming. 
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Fig. 9. Relationship between simulation time and grid size of 

woven 

5.2. Saddle surface 

Saddle surface is a kind of algebraic surface which can 

be expressed by 

0
22

22

=−− z
yx

.  (55) 

Saddle surface is non-developable surface and it is 

difficult to obtain the analytical solution of the draping 

result. The simulation results of draping on the saddle 

surface using GIB-fishnet algorithm and a commercial 

draping simulation software, PAM-QUIKFORM, are 

shown in Fig. 10. 

The whole saddle surface is divided into four parts by 

the boundaries as shown in Fig. 10, a, and the draping 

results are symmetric with each other. Take the lower right 

part as an example, nodes on i = j dotted line attain the 

maximal shear angle of each yarn, and the other dotted line 

connects the nodes with index i = 20. The relationships 

between shear angle and node position on the above 

mentioned dotted lines are shown in Fig. 11, including the 

two simulation results using GIB-fishnet algorithm and 

PAM-QUIKFORM (minus sign indicates the opposite 

shear direction). 

 

a 

 

b 

Fig. 10. Simulation results of draping on saddle surface: a – 

simulation result of GIB-fishnet algorithm; b – 

simulation result of PAM-QUIKFORM 

Fig. 11 shows a good agreement between shear angles 

obtained by GIB-fishnet algorithm and PAM-

QUIKFORM, it proves the feasibility and accuracy of the 

GIB-fishnet algorithm for draping simulation on algebraic 

surfaces. In addition, the maximal shear angles near the 

edge of surface are up to 50°, the data predicted from 

simulation can be used to guide the selection of reinforcing 

material and manufacturability evaluation for composite 

part. 
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Fig. 11. Relationship between shear angle and node position 

5.3. NURBS surface 

A complex NURBS surface as shown in Fig. 12 is 

used to examine the GIB-fishnet algorithm. The surface is 

generated by specifying the control points,  knot vectors 

and the associated weights, so it's impossible to get the 

analytical solution of draping on this surface. The 



 

520

simulation results obtained by GIB-fishnet algorithm and 

PAM-QUIKFORM are also shown in Fig. 12, where the 

two dotted lines represent the similar node sequences as in 

Fig. 10, a, the relationships between shear angle and node 

position on the two dotted lines are shown in Fig. 13. 

The shear angles of the simulation results coincide 

well with the expected values of PAM-QUIKFORM as can 

be seen from Fig. 13, the effectiveness of the GIB-fishnet 

algorithm for complex NURBS surface draping simulation 

is verified in this example. 

 
a 

 
b 

Fig. 12. Draping simulation result of a NURBS surface: a – 

simulation result of GIB-fishnet algorithm; b – simulation 

result of PAM-QUIKFORM 
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Fig. 13. Relationship between shear angle and node position 

6. CONCLUSIONS 

This paper presented a general technique for 

simulating the draping of 2D textile fabrics on 3D curved 

surfaces. Firstly, the deformation modes of fabric during 

the draping process were analyzed, a number of 

assumptions including the inextensibility of yarns were 

proposed. Then an overview of the theory of kinematic 

drape simulation was given. 

A novel fishnet algorithm based on geometry 

information was proposed. As a key component of the 

fitting algorithm, a mapping methodology for determining 

the coordinates of the current node using the tangent 

vectors and curvatures of the nearby nodes on the surface 

was developed. This method provides greater rapidity and 

accuracy than the existing methods. 

Two geometric methods for computing surface/surface 

intersection and seeking the shortest path of two points on 

a surface used in the GIB-fishnet algorithm are also 

studied, and in order to guarantee the universal 

applicability of the two methods, NURBS surface was 

used. 

With three simulation experiments of a spherical 

surface, a saddle surface and a complex NURBS surface, 

the feasibility and accuracy of the GIB-fishnet algorithm 

were demonstrated. The results show that the GIB-fishnet 

algorithm has a higher accuracy and speed than the 

existing geodesic algorithm, and demonstrate that the GIB-

fishnet algorithm is also effective for complex NURBS 

surface. 
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