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The paper presents the results of research of durability tests of porous sleeves under differed conditions (600, 1000 and 
1400 rpm, duration of the tests: 100, 200 and 1000 hours, temperature 60, 80 and 130 °C) of one oil. During the tests  
a temperature of the bearing and a friction torque were measured. After each durability test oil samples were extracted 
from the bearings and some chosen properties were carried out (FTIR spectrums and total acid number).  
In the second stage the neural networks were used to describe achieved tribological characteristics. The data collected 
during the tests were used as an input to different neural networks models and as an output the investigative results of oil 
parameters were used. Different models of neural networks were checked to achieve the smallest training error and the 
best correlation between output from the network and the target. 
Keywords: oil state, oxidation process, porous bearings characteristics, neural networks. 

 
1. INTRODUCTION ∗ 

Porous sliding bearings manufactured by sintering  
a metallic powder are produced in wide selection with use 
of various high-strength components (the load-bearing 
matrix of the material) and antifriction components, 
preventing seizure [1]. They can be characterised by low 
friction coefficient and high wear resistance, long 
durability, silent–running work and high load-carrying 
capacity, especially at small sliding velocities.  

The matrix can be filled with appropriate lubricant to 
sustain self-lubricating mechanism. However during work 
unfavourable effects decreasing their performance are 
observed, i.e. the leakage and evaporation of oil and the 
aging process of the lubricant. Therefore selection of 
lubricant is a crucial phase in porous bearing design  
[1, 2], as the properties of the lubricant can influence the 
main features of the bearing – non-service operation and 
lifetime. These characteristics are dependent on the 
complex of oil parameters, i.e. volatility, oxidation 
resistance, lubricating properties [2].  

Knowledge of lubricant parameters and its chemical 
constitution could give appropriate information about its 
state. However small amount of lubricant in porous bearing 
enables only few parameters to be tested, for instance total 
acid number (TAN) [3], presenting concentration of acid 
oxidation products and FTIR spectrum providing 
information due to spectral changes [4]. 

Acceptable work temperature, load and sliding 
velocity give appropriate conditions to sustain bearing 
work for a long period. Thus, durability tests of porous 
bearings should be performed to create models and predict 
service life of a bearing. However, service life tests are not 
widely performed and the prediction models of the 
durability are seldom presented and are based on the work 
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conditions [5] (temperature T, sliding velocity v, load p) or 
porous bearing parameters [6]. There are only few 
examples of lubricant research after the durability test 
[7, 8]. As it was revealed the process of oil deterioration 
could be much deeper than in conventional sliding 
bearings with solid bushes, because of temperature, 
catalyst metal–porous structure and oxygen accelerating 
oxidation of the oil [7]. Oil samples, extracted from the 
bearings after durability 1000 hour tests, had high values 
of the total acid number and deeply changed FTIR spectra. 
In one more research, examination of FTIR spectrum of 
greases after the real tests showed full decrease of peaks 
presenting the lithium soap thickener and the antioxidant 
[8]. 

There are also few examples of service-life prediction 
of porous bearings with use of neural networks [9]. 

Artificial neural networks (ANN) as a statistic and 
mathematical tool in data analysis and prediction are 
becoming more and more popular finding numerous 
applications in industry, finance, banking, medicine and in 
many others disciplines [10]. What makes them very useful 
is an ease of use and their capability of learning and pattern 
recognition. Consequently, in the field of tribology there 
are numerous examples of theoretical and practical 
implementations of ANN, i.e. wear debris analysis 
[11, 12], evaluation of surface parameters [13], condition 
monitoring of machines [14]. There are also articles 
discussing on usefulness of training algorithms of neural 
networks in various tribology problems [15]. 

Few researches predict a relationship between oil 
parameters, as in [16] modelling relation between 
oxidation resistance and tribological properties of non-
toxic lubricants or predicting remaining useful life with use 
of ANN [17], basing on the critical values of oil 
parameters such as viscosity, flash point, water content, 
insoluble rating. Oil FTIR spectrum data are very seldom 
used with ANN [18].  
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It could be finally emphasised that the application of 
ANN analysis to predict oil state after tribological test is 
not often presented. 

The idea of the article is to present a preliminary step 
of neural networks use in evaluation of lubricant state after 
porous bearings prolonged tests. 

2. EXPERIMENTAL DETAILS 
The object of the research were porous sliding 

bearings sintered from iron powder Höganas (Sweden) and 
impregnated with mineral gear oil, often used by porous 
bearings manufactures. After the investigation of the basic 
parameters of the chosen oil they were performed two kind 
of stand tests: 

• test 1: research of tribological characteristics 
during 1000, 200 and 100 hour durability test at 
three rotational speeds (600, 1000 and 1400 rpm) 
and three values of load p (consequently 2.72, 
1.45, 1.04 MPa) described previously [7, 19]; 

• test 2: research of tribological characteristics 
during 1000, 500 and 100 hour durability test at 
1000 rpm, under chosen load and three stable 
controlled temperatures (60 °C and 1.12 MPa, 
80 °C and 130 °C under 1.45 MPa).  

The basic parameters of the porous bearing and shaft 
were as follows: material of the bearing was Fe powder 
97.5 %, Cu powder 2.5 %, material of the shaft was steel 
NC6 (60 HRC). Porous bush size was 25-0.1/35.2-0.16 × 20-0.3 

mm and its mean open porosity was 21.5 %. Diametrical 
clearance during the tribological tests was in the range of 
40…60 µm.  

The measurements of fresh oil parameters were 
performed according to standardised methods, i.e. density 
by hydrometer method [20], kinematic viscosity by 
capillary method and dynamic viscosity [21], lubricity 
parameters by four-ball method [22], TAN by 
potentiometric method [23]. 

The stand test was previously described [19] and its 
details are shown in Fig. 1 and in Fig. 2. For the test under 
stable temperature the housings of the bearings were 
modified (Fig. 3) with electric heating module to control 
and stabilize (± 5 °C) a temperature of the bearing during 
the tests. During each test a temperature and friction torque 
were measured. However the test 2 was slightly modified, 
i.e. the 1000 hour test at 80 °C was prolonged to 
4008 hours, as after 500 hour tests no significant changes 
of lubricant properties were observed. 

After the tests oil samples were extracted from the 
bearings and chosen parameters of the oil were checked, as 
TAN and FTIR spectrum.  

The most significant tests were FTIR spectrum 
investigation of oil samples extracted from the bearings, as 
it is excellent tool to observe an oxidation process of oils 
and chemical changes of lubricant base and comprised 
functional additives. 

The tests of FTIR spectrum were performed with use 
of Nicolet is10 spectrometer by Thermo Scientific having 
IR source, DTGS KBr detector and KBr beamsplitter. 
within the spectral range 4000…650 cm-1, 32 scans, 4 cm-1 
resolution, Happ-Genzel apodization. As a consequence of 

small amount of oil extracted from bearings after the tests 
(c.a. 0.8 g) the measurements were conducted with ZnSe 
ATR accessory (Attenuated Total Reflection).  

Attenuated total reflection (ATR) is a very popular 
sampling technique having attributes as little or no sample 
preparation (no dilution required), results can be obtained 
with relatively little care or expertise, radiation is not 
transmitted through the sample, so it does not have to be 
thin enough to allow transmission [24].  

 
Fig. 1. View of the research module 

 
Fig. 2. The durability tester of sliding bearings: 1 – main plate;  

2 – frequency converter; 3 – electric motor; 4 – base slab; 
5 – research module 

 
Fig. 3. View of modified research module: 1 – thermocouple;  

2 – sensor of friction force; 3 – shaft; 4 – research module 
with heater 

The FTIR test procedures were based on ASTM 
standards [25, 26, 27] presenting practices for condition 
monitoring of in-service lubricants and used to assist in the 
determination of general machinery health. The standards 
recommend appropriate measurement area and baseline 
points for components observable in the mid-infrared 
spectrum. Information on components used in FTIR 
spectrum research is presented in Table 1. 
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Table 1. Basic parameters of fresh mineral gear oil 

Component Measurement area [cm-1] Baseline range [cm-1] 

Water Area 
3500…3150 

Minima 4000 to 3680 
and 2200 to 1900 

Oxidation Area 
1800…1670 

Minima 2200 to 1900 
and 650 to 550 

Sulfate by-
products 

Area 
1180…1120 

Minima 2200 to 1900 
and 650 to 550 

Antiwear 
components 

Area 
1025…960 

Minima 2200 to 1900 
and 650 to 550 

Collected data was used in a learning process of 
different ANN and the best models were chosen. 

3. NEURAL NETWORKS CREATION 
ANN are computational models inspired by an 

animal's central nervous systems and generally act as 
systems of interconnected neurons which can compute 
values from inputs.  

A single neuron is a nonlinear, parameterized, 
bounded function ),  ..,;.. ,(= k21n21 wwwxxxfy  with 
variables called inputs (x1, x2, ... xn) of the neuron and a 
value as its output y (Fig. 4). Thus, a network of neurons is 
the set of the nonlinear functions of two or more neurons 
with input, hidden and output layer (Fig. 5). In a neural 
network each neuron has also an activation function to 
scale the output of the neural network into proper ranges. 

 
Fig. 4. A single neuron as a nonlinear function of the variables 

(inputs x1, x2, ... xn) and of the parameters (connections or 
weights w1, w2, ... wk) 

Neural networks come in two classes: feedforward 
networks and recurrent (or feedback) networks [10]. A 
network has a feedforward structure if signals flow from 
inputs, forwards through any hidden layers, eventually 
reaching the output layers. Such a structure has stable 
behaviour and fault tolerance. Feedforward neural 
networks are often called static networks in contrast with 
recurrent or dynamic networks. If feedforward networks 
are multilayered and with sigmoid nonlinearities they are 
termed multilayer perceptrons, or MLPs. 

 
Fig. 5. A neural network model with input layer (x1, x2, ..xn), 

hidden layer and output layer (y1, y2, ..yn) with the 
parameters (connections or weights wj: w1, w2, ... wk) 

 

In recurrent neural network (RNN) at least one path 
called a cycle exists that, following the connections, leads 
back to the starting neuron. However, a neuron cannot be a 
function of itself, at the same moment of time, but it can be 
a function of its past value. Therefore, each connection of 
RNN is assigned a delay (possibly equal to zero), in 
addition to being assigned a parameter [10]. Such 
architecture of RNNs enables to use their internal memory 
to process arbitrary sequences of inputs.  

In the presented paper all calculations were performed 
with Statistica Neural Networks program and MLP 
networks were used as they are stable, simplified and very 
often used to resolve real problems [15, 16, 18]. 

Basing on the data from the tribological tests 
regression MLP were created with different activation 
functions (sigmoid, hyperbolic, exponential etc.).  

Important matter was to decide about the input and 
output parameters. The target variable is believed to 
depend on the inputs, so the chosen variables were work 
conditions of the bearings during the tests, i.e. p – pressure 
in the bearing from load, v – sliding velocity, T – work 
temperature, t – duration of the test. As the outputs were set 
of the oil parameters investigated after the tests, such as 
TAN of oil samples and area of selected peaks from FTIR 
spectrums.  

Next step in ANN creation was a learning process with 
different iterative techniques, to adjusts the weights of the 
neural network so that for any given input data x the neural 
network can produce an output which is as close as 
possible to y. The performance of achieved ANN is 
measured by how well they can predict unseen data, i.e. 
not used during training, what is known as generalization. 
Therefore the part of collected data was used in testing and 
validation process to achieve the best performance of build 
ANN.  

4. RESULTS 
The basic parameters of fresh mineral oil are presented 

in Table 2, where GOZ150 is lubricity parameter, so-called 
limiting load of wear, determined at the rotational speed of 
500 rpm, under constant load of P = 147.15 daN (150 kG) 
within the 60-second run [22].  

Table 2. Basic parameters of fresh mineral gear oil 

Density [g/cm3] Dynamic viscosity 
[mm2/s] Goz150 

[MPa] 
TAN 

[mgKOH/g] 20 °C 40 °C 100 °C 20 °C 40 °C 100 °C 

0.896 0.880 0.853 643.16 171.84 15.30 38.31 1.01 

The characteristics of friction torque and temperature 
were very stable for all chosen conditions in the test 1, as it 
is shown in Fig. 6. Mass decrease of oil was generally 
about 0.05 to 0.3 g and was in good and significant 
correlation with averaged bearing temperature 
(r = 0.7438). TAN values of oil samples from the bearings 
were in the range of 1.04 – 4.24 mgKOH/g and did not 
change significantly compared to the fresh oil. The 
tendency was also confirmed in the research of FTIR 
spectrums and showed no meaningful structural changes in 
oxidation products area (Fig. 7). Antiwear additive peak 
was not also decreased dramatically. 
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Fig. 6.  An example of tribological characteristics measured at 

1000 rpm during 200 hour test  
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Fig. 7. FTIR spectra of oil samples after durability tests 1 under 
different rotational speed and duration of the  
test – absorbance versus wavenumber [cm-1] 

It was characteristic for the test 1 that the most 
intensive changes were observed for peaks 1244 cm-1 and 
1150 cm-1 indicating the presence of C–O structure. 

Comparing the results after test 2 achieved 
characteristics of friction torque were stable at temperature 
of 60 and 80 °C. During the tests at 130 °C friction torque 
was unstable and all the bearings were seizured shortly 
before 500 hour. Consequently, a 1000 hour test at highest 
temperature was not performed. The mass loss of oil was 
also measured and its highest value was observed for the 
bearings tested at 130 °C.  
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Fig. 8. FTIR spectra of oil samples after durability tests 2 at 

different temperature and duration of the test – absorbance 
versus wavenumber [cm-1] 

TAN values of oil samples extracted from the bearings 
were in the range of 1.29…4.02 mgKOH/g after the test at 
60 and 80 °C. However increase of the temperature 
resulted in much higher values of TAN reaching even 
27.07 mgKOH/g. FTIR spectrums of investigated oils 
proved that tendency (Fig. 8). 

The FTIR spectra showed high changes within 
oxidation products area (1850 – 1670 cm-1) for oil samples 
tested at 80 °C for 4008 hours and the biggest increase was 
achieved for oil samples tested at 130 °C. Within the 
antiwear additive area the changes were comparable with 
those observed after the test 1 (applied load was smaller in 
the test 2). It was also visible smaller intensity of peaks 
1244 cm-1 and 1150 cm-1, representing C–O structure. 

5. RESULTS OF ANN CREATION 
ANN were created separately for the test 1 and test 2, 

as they were different work conditions. As mentioned, 
ANN had strictly specified inputs, as a consequence of 
performed tribological tests (work parameters), i.e. p, v, T 
and t. The outputs of ANN were parameters of oil 
investigated after the tests, i.e. TAN value, SAW antiwear 
additive peak area, SOP oxidation products peak area, SSUM 
summarized area of selected peaks. Finally, ANN had 3 or 
4 inputs and 1 target. 

In Table 3 – Table 10 there are presented examples of 
calculations of ANNs, having the best training 
performance Ptr, test performance Pt and validation 
performance Pv (as possible close to 1) and the smallest 
training and test error (Etr , Et). Output activation functions 
AF are also listed and sensitivity analysis parameters, 
estimating the importance of the models' input variables. 

As for TAN value of oil samples after both test, the 
best ANNs were achieved for oil samples after test 1. It 
was confirmed by high value of training performance Ptr 
(Table 3). ANN created for TAN output for the test 2 
showed also high value of training performance Ptr  
(Table 4). 

Table 3. ANNs with v, p and t inputs and TAN output – test 1 
Net. 
name Ptr Pt Pv Etr Et AF 

3-4-1 
0.9740 0.346 1.000 0.021 0.019 Exponential 

Sensitivity analysis of ANN inputs 
v 126.395 p 18.593 t 11.492 

Table 4. ANNs with p, t and T inputs and TAN output – test 2 
Net. 
name Ptr Pt Pv Etr Et AF 

3-2-1 
0.961 1.000 -1.000 3.890 0.001 Logistic 

Sensitivity analysis of ANN inputs 
p 2.124 t 2.094 T 12.714 

Sensitivity analysis of ANNs created for TAN output 
showed strong influence of v velocity (3 – 4 – 1 ANN) on 
TAN value – Table 3) after test 1. On the other hand, 
during the test 2 (Table 4) the strongest influence on 
achieved TAN values had temperature T. 

In Table 5 and Table 6 there are presented results of 
ANNs created for antiwear additive peak from FTIR 

1.0 
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spectrum for oil samples after test 1 and test 2. As it can be 
seen for the test 1 (Table 5.) training performance Ptr was 
not very high, however value of testing performance Pt was 
acceptable. The results of ANN creation for antiwear peak 
SAW as an output after test 2 (Table 6) present higher values 
of training performance Ptr (0.799) compared to the results 
after test 1 (0.498). 

As previously, the best ANNs after test 1 and test 2 are 
created with different inputs: for test 1 – v, p and t, for test 
2 – p, t and T. Sensitivity analysis showed that inputs 
variables had after test 1 (Table 5) slightly differed impact 
on the SAW and the highest influence was noticed for 
velocity v. As for the results after test 2 (Table 6) 
comparable values were observed and almost equal 
influence on the values of SAW. 

Table 5. ANNs with v, p and t inputs and SAW output – test 1 
Net. 
name Ptr Pt Pv Etr Et AF 

3-3-1 
0.498 0.861 1.000 1.483 0.215 Linear 

Sensitivity analysis of ANN inputs 
v 4.756 p 3.995 t 1.108 

Table 6. ANNs with p, t and T inputs and SAW output – test 2 
Net. 
name Ptr Pt Pv Etr Et AF 

3-1-1 
0.799 1.000 1.000 0.023 0.016 Logistic 

Sensitivity analysis of ANN inputs 
p 2.855 t 2.855 T 2.855 

In the last stage the summarized peaks area SSUM was 
set as the output for created ANNs, as this parameter could 
represent the observed changes in chemical composition of 
oil samples after aging process. The results of the 
calculations are presented in Table 7 and Table 8.  

The best results for oil samples after test 1 were 
reached for ANN MLP 3 – 1 – 1 (Table 7), having quite 
good performance and small errors. Activation function for 
output was hyperbolic tangent (tanh).  

Sensitivity analysis showed comparable influence of 
all the input variables on the output for presented ANN.  

Table 7. ANNs with v, p and t inputs and SSUM output – test 1 
Net. 
name Ptr Pt Pv Etr Et AF 

3-1-1 
0.547 1.000 1.000 0.025 0.056 tanh 

Sensitivity analysis of ANN inputs 
v 1.094 p 1.177 t 0.992 

Table 8. ANNs with p, t and T inputs and SSUM output – test 2 
Net. 
name Ptr Pt Pv Etr Et AF 

3-3-1 
0.975 1.000 0.981 0.001 0.001 Identity 

Sensitivity analysis of ANN inputs 
p 4989.62 t 194.20 T 380.19 

Performance parameters of ANN created for SSUM 
output after test 2 had high values and small errors were 
noticed. Sensitivity analysis showed that the strongest 
influence on SSUM had load p value. 

6. DISCUSSION 
Created ANN for the results of two tribological 

dissimilar tests showed quite high training and testing 
performance and small errors. However, as it was noticed 
(Fig. 9 – Fig. 12.) residuals values were not always small, 
so it meant that the model was not fully satisfactory. 
Moreover distribution of residuals should be evaluated for 
normality. That would give information if created ANN 
had the same effectiveness along all the cases. 

In Fig. 9 residuals for TAN of oil samples after test 1 
are presented, showing small values. On the other hand, 
the results after test 2 were not so satisfactory (Fig. 10). 
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Fig. 9. Comparison of TAN, TAN output and residuals of 3-4-1 

ANN and for consequent cases after test 1 

48 50 52 54 56 58 60 62 64 66 68 70
Cases

-10

-5

0

5

10

15

20

25

30

TA
N

 [m
gK

O
H

/g
]

 TAN [mgKOH/g]
 TAN [mgKOH/g] - Output
 TAN [mgKOH/g] - Residues

 
Fig. 10. Comparison of TAN, TAN output and residuals of 3-2-1 

ANN and for consequent cases after test 2 

In the next two Fig. 11 and Fig. 12 there are presented 
results of residuals distribution for SSUM after test 1 and 2. 
As it appeared the values of residuals after test 1 were 
rather high and the modelled output did not fit well to the 
real values.  

Finally, for observed residuals distribution normality 
was estimated. The estimation of normality distribution 
was performed according to the Shapiro-Wilks, as it has 
become the preferred test of normality because of its good 
power properties as compared to a wide range of 
alternative tests (for example widely used the 
Kolmogorov-Smirnov test) [29]. Moreover it is rather 
seldom discussed the problem of statistical evaluation of 
neural networks experiments [30].  

In Table 9 there are collected results of the Shapiro-
Wilks test indicating the normality of residuals 
distribution. If the W statistic is significant (pSW < 0.05), 
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then the hypothesis that the respective distribution is 
normal should be rejected. 
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Fig. 11. Comparison of SSUM, SSUM output and residuals of 3-1-1 

ANN and for consequent cases after test 1 
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Fig. 12. Comparison of SSUM, SSUM output and residuals of 3-3-1 

ANN and for consequent cases after test 2 

Table 9.  Shapiro-Wilks test results for different ANNs 

Test Net. 
name 

Output  
of ANN Shapiro-Wilks parameters 

1 

3-4-1 TAN SW-W = 0.9366; pSW = 0.1521 

3-3-1 SAW SW-W = 0.8629; pSW = 0.0047 

4-2-1 SOP SW-W = 0.9316; pSW = 0.1186 

3-1-1 SSUM SW-W = 0.9435; pSW = 0.2138 

2 

3-2-1 TAN SW-W = 0.7426; pSW = 0.00004 

3-1-1 SAW SW-W = 0.797; pSW = 0.0003 

3-1-1 SOP SW-W = 0.6615; pSW = 0.0000 

3-3-1 SSUM SW-W = 0.917; p = 0.0501 

As the results showed, normality of residuals 
distribution is observed for ANNs after test 1 with outputs 
TAN, SSUM and SOP. After the test 2 residuals normality is 
observed only for SSUM. 

It was clearly seen that ANN having more nodes in 
hidden layers had better parameters and smaller residuals, 
so better fitting of the model to the real values. However 
the growing total number of all nodes needed higher 

number of cases, according to recommended factor 1 : 10 
or acceptable 1 : 3 or 1 : 4 [10, 29]. 

7. CONCLUSIONS 
Achieved results of ANN creation showed possibility 

of use of neural networks to characterise oil state after 
durability test with chosen parameters of oil. ANN had 
rather high performance parameters and small errors. 
However it should be noticed that the main problem was 
number of cases, which could be used in training, testing 
and validation process, as it was quite complicated because 
of time consuming durability test of porous bearings.  

The results from two tribological tests needed different 
ANNs to describe the output variation from independent 
input variables.  

Next step of the research will be creation of ANNs for 
different kind of oil and collection of higher number of 
cases. 
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