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Hydrolyzed polyacrylamide (HPAM) is widely used to increase the sweep efficiency of water phase in oil reservoirs. It 

is very important to select proper polymer for the reservoirs. In this study, a series of ultra-high molecular weight 

HPAMs were synthesized and characterized by FT-IR analysis. Their physical properties were tested under reservoir 

condition. BP neural network (BPNN) was employed to forecast the viscosity of high molecular weight HPAM in 

produced water. The input indices including molecular weight, solid content, degree of hydrolysis, water-insoluble 

residue, polymer concentration, temperature of reservoir and salinity of produced water. The results show that all 

physical properties fulfill the requirements of Q/SY DQ1059-2005. This BPNN can predict the viscosity of ultra-high 

molecular weight HPAM accurately. It is proposed that this BPNN can be used to screen proper polymers for enhance 

oil recovery.  
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1. INTRODUCTION 

Polymer flooding is a quite advanced technique for 

enhancing oil recovery [1]. Water-soluble polymer, such as 

hydrolyzed polyacrylamide (HPAM), is now becoming a 

class of prospective candidates as thickeners to improve 

the mobility ratio in the flooding process [2]. 

It has been shown that the higher molecular weight of 

HPAM is, the thicker the solution will be [3]. Moreover, 

the solution viscosity depends not only on the molecular 

weight of HPAM, but also on many physical properties 

and the test conditions, such as filter factor, insoluble 

residue, hydrolysis degree, temperature, salinity and so on 

[4]. Since there are many factors can affect the viscosity of 

HPAM, it is very hard to forecast the viscosity of HPAM. 

However, the viscosity of HPAM forecast is of great 

significant for polymer flooding, especially for engineers 

to screen polymer. So, it is necessary to find a reliable 

method to forecast the viscosity of HPAM based on some 

common factors, which is tested under specified and rigid 

conditions and can be supplied by every company. 

However, there is few researches that focus on this field.  

As a forecasting technique, artificial neural network 

(ANN) has been widely used in many different domains. 

Compared with other forecast methods, ANN methods are 

advantageous in terms of high data error tolerance, easy 

adaptability to online measurements. A Back Propagation 

Neural Network (BPNN) is a typical ANN. It is essentially 

a mapping function from the input vector(s) to output 

vector(s) without knowing the correlation between the 

data. It can implement any complex nonlinear mapping 

function proved by mathematical theories, and 
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approximate an arbitrary nonlinear function with 

satisfactory accuracy. After learning the data trends from 

historical data, BPNN can be used effectively to forecast 

new data [5 – 7]. So, BPNN might be able to forecast the 

HPAM viscosity. 

In this work, a series of HPAM was synthesized and 

characterized by Fourier Transform Infrared spectroscopy 

(FT-IR). The molecular weight, viscosity, solid content, 

degree of hydrolysis, water-insoluble residue et al. was 

tested. Then BPNN was employed to forecast the viscosity 

of HPAM under reservoir conditions. The accuracy of 

forecasting results was also tested. 

2. EXPERIMENTAL DETAILS  

2.1. Materials 

Acrylamide, urea, potassium persulfate, sodium 

bisulfite, sodium formate, sodium hydroxide were 

analytical grade chemicals. Deionized water was used in 

solution preparation. The produced water was from 

Dagang oilfield. 

2.2. Synthesis of HPAM 

A 500 ml beaker was charged with 60 g acrylamide, 

240 g deionized water and 3 g urea. The mixture was 

stirred until a homogeneous phase appears in the solution. 

Temperature was adjusted at 10 – 13 °C. The mixture was 

poured into a heat insulation beaker equipped with a cork 

of thermometer and a nitrogen inlet/outlet and purged with 

nitrogen for at least 40 min. Potassium persulfate initiator, 

sodium bisulfite and sodium formate, were dissolved in 

water respectively, and were injected into the reaction 

mixture. After 8 h and temperature is over the maximum 

(around 65 °C), the reaction is finished. The product has 

the aspect of a gel. It was cut into pellet smaller than 
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1.0 cm. Then hydrolysis reaction was performed by mixing 

a solution of 11.4 g sodium hydroxide in 50 ml of water 

with these pellets until one obtains a homogeneous phase 

which is gel-like. A dialysis bag filled with this phase is 

put into an excess of water at 90 °C for 2.5 h. After 

hydrolysis process, the product was cut again into pellets 

of 1.0 cm size, and dried under vacuum, the temperature 

being kept below 60 °C. The dried pellet is finally broken 

into powder. 

2.3. FT-IR 

The FT-IR spectroscopy was carried out on a Perkin 

Elmer FT-IR using Spectrum software version 10.3.2. The 

FTIR spectrum of the HPAM was recorded in the region 

4000 – 650 cm-1 by using KBr pellet technique. The 

spectrum was recorded at room temperature, with scanning 

speed of 10 cm-1 per minute and the spectral resolution of 

4.0 cm-1. 

2.4. Properties measurements of HPAM solution 

The property's measurements of HPAM solution was 

according to Q/SY DQ1059-2005, including viscosity, 

molecular weight, insoluble residue and so on. The 

concentration of polymer used in viscosity test was 

1000 mg/L. 

3. RESULTS 

3.1. Characterization 

The HPAM (molecular weight = 32.18 million) was 

selected as an example, and its structure was confirmed by 

FT-IR spectroscopy showed in Fig. 1. The peaks of 3337 

and 3178cm-1 are the characteristic absorbing peaks of the 

amide group. The peaks of 1651, 1553, and 1448 cm-1 

indicated the existence of C=O, C-N and N-H bonds [9]. 
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Fig. 1. FT-IR spectra of HPAM 

3.2. Physical properties of HPAM 

HPAM physical properties are given in Table 1 and 

Table 2. The results show that the molecular weight is 

between 28 million, and 37 million and the viscosity is 

between 60 and 75 mPas. All physical properties are 

fulfilling the requirements of Q/SY DQ1059-2005. 

3.3. BPNN 

As the BPNN is used as a baseline method in this 

study, we briefly describe it in this section. This network is 

a three-layer network: the input layer, a hidden layer and 

the output layer. The seven nodes in the input layer 

represent the molecular weight, hydrolysis degree, 

insoluble residue, solid content, temperature, concentration 

and salinity. Seven nodes were chosen as the input layer is 

based on experience and extensive experiments: the seven 

nodes can describe the physical properties of HPAM and 

the reservoir condition basically. 

Table 1. Polymers physical properties tested results at 40 °C 

No. 

Solid 

content, 

% 

Molecular  

weight, 

million 

Hydrolysis  

degree, % 

Insoluble  

eesidue, 

% 

Salinity, 

mg·L-1 

Viscosity, 

mPa·s 

1 88.40 32.98 27.85 0.08 5090 70.6 

2 88.95 29.98 26.44 0.10 5117 68.0 

3 89.64 28.88 27.84 0.16 5112 70.0 

4 89.11 31.63 28.11 0.18 5101 66.7 

5 88.91 29.85 25.35 0.22 4964 63.3 

6 88.93 29.67 28.83 0.10 4937 66.8 

7 89.80 28.96 27.50 0.32 5178 65.5 

8 89.10 32.18 27.63 0.30 5174 69.5 

9 89.16 33.59 27.72 0.04 4995 69.0 

10 89.44 32.26 27.44 0.24 4902 67.3 

11 89.93 28.20 27.00 0.28 5105 65.6 

12 88.94 32.36 27.72 0.14 5089 65.5 

13 89.03 29.66 27.80 0.12 5122 71.6 

14 88.92 29.59 27.83 0.20 4953 67.5 

15 89.67 29.89 27.83 0.18 5134 66.8 

16 89.04 34.00 27.47 0.04 5021 72.4 

17 88.83 33.10 24.92 0.14 5091 68.2 

18 89.67 32.61 26.69 0.14 4952 66.0 

19 89.67 33.62 26.81 0.18 5056 67.9 

20 89.44 36.70 27.39 0.26 5085 70.5 

21 89.51 31.48 27.71 0.30 4948 72.3 

22 88.72 32.91 27.75 0.18 4903 72.1 

23 88.97 31.50 27.53 0.14 5107 70.5 

24 88.92 32.35 27.63 0.22 4950 70.5 

25 89.69 34.02 26.48 0.14 5182 71.0 

26 89.14 33.62 27.34 0.10 4907 67.8 

27 89.62 32.33 26.97 0.06 5023 72.0 

28 89.10 32.53 27.70 0.12 5163 74.5 

29 88.49 31.99 27.34 0.08 5048 73.4 

30 89.25 31.72 27.65 0.12 4959 71.6 

When the input layer has seven nodes, the forecast 

result is much better compared to other cases. The only one 

node in the output is the HPAM viscosity. Since the hidden 

layer affects the robustness of the neural network, Hecht-

Nelson [10] method was employed to determine the node 

number of the hidden layer for better prediction result: 

when the node number of the input layer is n, the node 

number of the hidden layer is 2n + 1.With seven input 

neurons, fifteen hidden neurons, and one output neuron, as 

shown in Fig. 2, the training process of BP network can be 

described as follows [7]: Study process is formed by two 

parts: signal forward-propagating and error signal reverse 

dissemination. When forward-propagating, the input 

sample spreads from the input layer, coped with by hidden 

layers, passing on to the output layer. Neuron condition in 

one layer only influences next layer’s neuron. If expected 

output cannot be obtained from the output layer, then 

system turns to error signal reverse dissemination stage, 

which makes outlet error back propagate to the input layer 

through hidden layer, and shares error with all units of 

each layer, thus obtains error signal of each unit, which be 

regarded as the basis of revising weight value. This kind of 

signal forward-propagating and error back-propagating is 

to go round and round. The process of weight continual 

readjustment is the network study training process. The 
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process carries on when the network output error-reducing 

to acceptance degree or arriving at preset study number. 

Table 2. Polymers physical properties tested results at 50 ° 

No. 

Solid 

content,

% 

Molecular 

weight, 

million 

Hydrolysis 
degree, % 

Insoluble 

residue, 

% 

Salinity, 

mg·L-1 

Viscosity, 

mPa·s 

1 89.07 32.40 27.61 0.18 5125 67.1 

2 89.28 32.44 27.07 0.16 5187 66.0 

3 89.12 34.86 27.76 0.12 5147 72.6 

4 88.77 30.57 25.92 0.14 4942 65.5 

5 89.52 36.32 27.95 0.10 5031 71.8 

6 88.72 28.29 27.37 0.26 5176 71.8 

7 89.23 28.07 27.57 0.20 5162 66.9 

8 88.53 30.82 27.74 0.08 5115 64.7 

9 89.41 35.53 27.16 0.18 5068 72.7 

10 89.81 30.91 27.59 0.10 4963 68.1 

11 88.95 32.06 27.53 0.08 5106 65.2 

12 89.41 33.94 27.28 0.10 4925 69.0 

13 88.77 33.52 27.03 0.12 4953 67.8 

14 89.57 32.66 27.37 0.26 4986 68.5 

15 90.08 29.78 26.44 0.32 5090 68.1 

16 89.19 30.68 26.34 0.06 5055 63.4 

17 89.15 31.73 28.03 0.20 5067 65.4 

18 89.23 30.10 28.10 0.08 5164 64.4 

19 88.65 29.68 27.28 0.10 5034 63.4 

20 89.11 36.31 29.67 0.12 5183 69.3 

21 89.53 36.69 28.75 0.24 4913 65.7 

22 89.14 33.16 27.12 0.10 5054 65.7 

23 88.62 34.26 28.63 0.26 5084 62.8 

24 89.27 32.09 27.92 0.06 5034 67.0 

25 90.07 32.06 27.92 0.14 4927 68.1 

26 89.75 28.65 27.57 0.14 4952 60.2 

27 89.08 31.58 27.63 0.10 4982 69.8 

28 89.48 28.22 27.45 0.10 4907 65.9 

29 89.78 31.72 26.41 0.10 5134 62.1 

30 89.20 34.08 27.46 0.08 5067 64.6 

To ensure the quality of forecast results, we adopt 

normalized method to treat the input and output data in 

advance of training the network, the formula is as follow: 

12
minmax

min 





XX

XX
X i , (1) 

where Xmin and Xmax are the minimum and maximum value 

of input array or output vectors, and Xi denotes the real 

value of each vector. 

 
Fig. 2. PSO-BP neural structure 

3.4. BPNN optimized by Particle Swarm 

Optimization algorithm 

The BPNN optimized by Particle Swarm Optimization 

algorithm is also called PSO-BP algorithm, it takes the 

weights and biases of neurons trained as one particle for 

PSO algorithm. The fundamental idea of PSO-BP 

algorithm can be described as follows: 

1. Normalize the training dataset and the testing dataset 

into [-1, 1]. 

2. Randomly initialize a group of m particles with the 

number is m, including positions and speed velocities. 

3. Compute every particle’s fitness value: referring to a 

complexity of training dataset, LM algorithm or the 

Conjugate gradient algorithm is used to train the BP 

neural network. When the dataset is simple, the LM 

algorithm is used; otherwise Conjugate algorithm is 

chosen. Update the weights and biases of each neuron 

using current gbest value. The performance function 

selects the MSE function: where MSE denotes the 

mean sum of squares of the network errors. 

4. Update particles’ speed and position using the 

following Eq.: 

)()( 2211

1 t

i

tt

i

tt

i

tt

i xgbestcxpbestcVV   ; (2) 
11   t

i

t

i

t

i VXX , (3) 

where Vi 
t is the velocity of particle i at iteration t. As Vi 

t is 

uncontrollable, a particle will cycle beating in the problem 

space, in order to inhibit the erratic beating, the speed is 

often limited to a value within [-vmax,vmax]; Xi 
t represents 

the position of i particle i at iteration t; τ1 and τ2 are two 

uniform random number from [-1, 1]; c1 and c2 are learning 

factor that also called acceleration constants as they control 

how far a particle can move in a single iteration. Generally, 

c1 = c2 = 2 were used. pbestt and gbestt are the individual 

best position and the global best position of all particles at 

iteration t respectively. The variable ωt is inertia weight at 

iteration t that is defined by Eq. below. A larger inertia 

weight led to the global exploration and a smaller inertia 

weight tends to facilitate the local exploration to fine-tune 

the current search area. 

max

minmaxmax

t

it

iter
)(   , (4) 

where ωmax and ωmin are maximum and minimum of inertia 

weight respectively, which are suggested to be 0.9 and 0.4 

respectively; iter is the iteration t; itmax is maximum of 

iteration number. 

5. If the end condition is not satisfied, go to step 2 again, 

or else, go to (6). The end station usually is set to a 

previously determined itmax or adapts fitness value. 

6. Update the weights and biases of BPNN by PSO 

algorithm and the network can be used for forecasting. 

7. Renormalize the forecasting results from [-1, 1]. 

3.5. Optimal parameters selection for BPNN based 

on particle swarm optimization 

The fitness (objective) function is taken to be MSE 

shown in Eq. 5, where yk-real is the real output value,  

yk-forecast is the forecasting output, and Q is the total number 

of cases used. The minimum value of the fitness function 

corresponds to the best nest (solution) [11].  
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Table 3. Test and forecast results 

No. 
Solid 

content, % 

Molecular 

weight, million 

Hydrolysis 

degree, % 

Insoluble 

residue, % 
T/°C 

Salinity, 

mg·l-1 

Real 

viscosity, 

mPa s 

Forecast 

viscosity,  

mPa s 

Forecast 

error, % 

1 86.59 25.23 29.82 0.26 40 5106 63.0 63.1 0.16 
2 87.60 30.12 28.72 0.18 40 4925 74.1 73.9 -0.27 
3 87.56 25.33 29.18 0.12 40 4953 66.1 66.4 0.45 
4 89.21 31.69 28.11 0.30 50 4986 68.7 69.1 0.87 
5 89.07 34.98 27.57 0.25 50 5090 72.3 72.3 0.00 
6 88.68 34.35 28.55 0.20 50 5055 73.5 73.2 -0.41 
7 91.08 30.58 26.78 0.25 60 5067 63.3 63.1 -0.32 
8 89.20 31.20 26.10 0.10 60 5164 64.2 64.2 0.00 
9 89.03 32.67 26.42 0.21 60 5034 70.8 71.1 0.42 

 

After optimized the BPNN by Particle Swarm 

Optimization algorithm, the algorithm parameters are 

configured as follows: α = 1, max iteration number = 1000, 

network error = 0.0001. α > 0 is the step size which should 

be related to the scales of the problem of interest. In most 

cases, α = 1 [11]. When the topology structure and initial 

parameters of BPNN has been optimized by PSO-BP 

algorithm, the BPNN is successfully established. 

3.6. Simulation results of the case study 

The error training curves of BPNN and under the 

setting is shown in Fig. 3. It is obvious that this BPNN 

have a fast convergence rate and high accuracy, and the 

network trains successfully. 

 
Fig. 3. BPNN error training curve 

3.7. Forecast by BPNN 

MATLAB Neural Network Toolbox was employed to 

configure the BPNN. Another 9 HPAM were synthesized 

and their physical properties were tested as described 

above. The test and forecast results are shown in Table 3. 

Through analyzing error of the predicted results, it can 

be seen that the network is trained in good condition. The 

fluctuations of the prediction value are in a small range 

around the actual value. Since the input layer did not 

include the data of HPAM viscosity at 60 °C, it is likely 

that the BPNN has a wider application area. 

4. CONCLUSIONS 

1. A series of ultra-high molecular weight HPAM were 

synthesized and characterized by FT-IR.  

2. A BPNN was successfully established. Considering 

the actual conditions of oilfield and the typical 

physical properties, proper set of indices was selected 

as the inputs of the network. This BPNN can be used 

to forecast HPAM viscosity. Errors satisfy the 

requirement of practical application. 

3. This BPNN has omitted to take into consideration the 

viscosity of copolymers and the temperature higher. 
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