Polytype Stabilization of High-purity Semi-insulating 4H-SiC Crystal via the PVT Method
DOI:
https://doi.org/10.5755/j01.ms.22.2.12914Keywords:
high-purity semi-insulating, 4H-SiC, polytype stabilization, sublimation methodAbstract
Because the conditions under which semi-insulating 4H-SiC crystals can grow are so specific, other polytypes such as 15R and 6H can easily emerge during the growth process. In this work, a polytype stabilization technology was developed by altering the following parameters: growth temperature, temperature field distribution, and C/Si ratio. In the growth process of high-purity semi-insulating 4H-SiC crystals, the generation of undesirable polytypes was prevented, and a crystal 100 % 4H-SiC polytype was obtained. A high C/Si ratio in powder source was shown to be advantageous for the stabilization of the 4H polytype. Several methods were applied to evaluate the quality of crystals precisely; these methods include Raman mapping, X-ray diffraction, and resistivity mapping. Results showed that the 3inch-wafer was entirely made of 4H polytype, the mean value of FWHM was approximately 40 arcsec, and the distribution of the resistivity value was between 106 Ω×cm and 107 Ω×cm.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.