Tourmaline Nanoparticles Doped Polyvinylidene Fluoride (PVDF) Nanofibers
DOI:
https://doi.org/10.5755/j01.ms.26.3.22335Keywords:
PVDF, tourmaline, electrospinning, SEM, FTIR, XRD, voltage outputAbstract
The aim of this work is to produce tourmaline (TM) doped polyvinylidene fluoride (PVDF) nano-composite fibers. TM-containing PVDF nanofibers were produced via a horizontally located electrospinning unit. N,N-dimethylformamide (DMF) and acetone were used as solvents. The amount of PVDF or PVDF/TM in the polymer solution was 20 wt.%. PVDF was dissolved in DMF in presence of heat by using a magnetic stirrer while TM powder was dispersed in Acetone in absence of heat by using an ultrasonic stirrer. These two solutions were then mixed for TM/PVDF nanocomposite fiber production. Pristine PVDF nanofibers were also electrospun as control samples. Produced nano-surfaces were analyzed under scanning electron microscopy (SEM), Fourier-transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD). Voltage generation capacities were investigated by recording the voltage outputs of samples under an applied rotational impact. The peak voltage produced by the TM doped PVDF nanocomposite fibers was higher than the PVDF nanofibers.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.