Influence of Strain-Hardened Zones and Intermetallic Layers of Explosion Welded and Heat Treated Al/Cu Laminated Metal Composites on the Evolution of Thermal Conductivity Coefficient
DOI:
https://doi.org/10.5755/j01.ms.20.3.4602Keywords:
explosion welding, thermal conductivity, bimetal, intermetallic layerAbstract
In this study laminated Al/Cu composite was obtained by explosion welding. The effect of strain-hardened zones and the intermetallic layer on thermal conductivity coefficient was investigated. For this purpose the specimens after explosion welding and after subsequent annealing to obtain the intermetallic layer were studied by X-ray methods and means of optical microscopy to determine the phase composition and the width of intermetallic layer. The microhardness tests were carried out to identify the width of the strain-hardened zones and the intermetallic layer. The thermal conductivity coefficient of the composite was experimentally measured to calculate the thermal properties of the strain-hardened zones and intermetallic layer. The width of the strain-hardened zone and the intermetallic layer was 80 μm and 160 μm respectively. The heat conductivity coefficients of the strain-hardened zones and intermetallic layer were 108 W/(m×K) and less than 35 W/(m×K) respectively.Downloads
Published
2014-09-16
Issue
Section
METALS, ALLOYS, COATINGS
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.