Copper-based Composite Materials Reinforced with Carbon Nanostructures

Tatiana Larionova


The present work is devoted to development of high performance Cu-based material reinforced with carbon. For this purpose Cu-C composite powders were produced by one-step CVD process. The powders containing carbon nanofibers and graphene were subjected to compacting and analyzed. Mechanical properties of Cu-carbon nanofibers (CNFs) and Cu-graphene composites were compared to traditional Cu-graphite and pure copper samples compacted under the same technology. Cu-CNFs material showed the best performance (1.7 times increase in the hardness compared to copper), that is primarily explained by the smallest matrix grain size, which growth is inhibited by the homogeneously dispersed CNFs. Friction coefficient of the Cu-(17-33)vol.%CNF was found to be 9 times less than that of pure copper and coincides within the error with Cu-graphite, however the wear of Cu-33vol.%CNF reduced by more than 2 times over Cu-33vol.% graphite samples.



Copper-based composite, carbon nanostructures, chemical vapor deposition, mechanical properties, wear

Full Text: PDF

Print ISSN: 1392–1320
Online ISSN: 2029–7289