The Investigation of Knitted Materials Bonded Seams Behaviour upon Cyclical Fatigue Loading
DOI:
https://doi.org/10.5755/j01.ms.23.2.16065Keywords:
knitted, bonded seam, uniaxial tension, fatigue loading, thermoplastic filmAbstract
In this research uniaxial tension behaviour of PES knitted materials with bonded seams is analysed. The objects of the investigation were two types of knitted materials, having the same fibre composition (93 % PES, 7 % EL), but different in knitting pattern, i. e. plain single jersey and rib 1 × 1. Bonded overlap seams were formed by changing the orientation of knitted materials strips, i. e. parallel/parallel, parallel/bias, parallel/perpendicular, bias/bias and bias/perpendicular. The strips of each knitted material were joined by two types of thermoplastic polyurethane (PU) films different in thickness (75 mm and 150 mm). Mechanical characteristics of bonded seams were defined in longitudinal direction. During uniaxial tension such parameters as maximal force Fmax (N) and maximal elongation ɛmax (%) were recorded from typical tension diagrams. The changes of tested specimens strength and deformation were compared before and after cyclical fatigue tension the conditions of which were 50 cycles up to tension force F equal 24.5 N. The results have shown that changes before and after cyclical fatigue tension are mostly determined by the structure of knitted materials, the orientation of knitted materials strips in bonded seam, but not effected by thermoplastic polyurethane film. These results are opposite compared to the results of biaxial tension of the same type of specimens, which have shown that changes before and after cyclical fatigue punching are mostly determined by the type of thermoplastic film, but not effected by the orientation of knitted materials strips in bonded seams.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.