First Principles Study on Li-doped and Li,O-codoped AlN
DOI:
https://doi.org/10.5755/j01.ms.25.1.19138Keywords:
semiconductor, AlN, codoping, first principlesAbstract
This paper focuses on the detailed investigation of the structural and electronic properties of wurtzite AlN crystals doped by Li with and without oxygen with the first principles calculation. All the calculations have exhibited significant structural distortions. Compared with the monoclinic doping, the oxygen codoping has improved the structure deformation and lowered the formation energy of Li dopants. The calculated electronic density of states (DOS) reveals that all doping configurations still preserve semiconductor characteristics. The states around the valence band maximum cross the Fermi level, which implies p-type doping. The induced extra levels are extremely localized and flat in Li-doped AlN while much more delocalized in oxygen codoped models. The mono-doping of Li is in general energetically unfavorable while the codoping improves the formation and makes the intercalation of Li more stable in AlN. According to the results, the codoping configuration of Li with O in AlN has provided a useful way of modifying the corresponding properties.Downloads
Published
2019-01-08
Issue
Section
ELECTRONIC AND OPTICAL MATERIALS
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.