Heterogeneous Nucleation Effect of N, N'-Adipic Bis(4-phenylbutyric Acid) Dihydrazide on Crystallization Process of Poly(L-lactic Acid)
DOI:
https://doi.org/10.5755/j01.ms.25.4.20603Keywords:
Poly(L-lactic acid), heterogeneous nucleating agent, crystallization behavior, melting behavior, thermal stabilityAbstract
Enhancing crystallization ability is a fundamental challenges in Poly(L-lactic acid) (PLLA) industry, therefore, the goal of this work was to synthesis a new organic nucleating agent N, N'-adipic bis(4-phenylbutyric acid) dihydrazide (APAD), and investigate its effect on non-isothermal crystallization, isothermal crystallization, melting behavior, thermal stability, and optical property of PLLA. Non-isothermal melt crystallization results showed that APAD acted as more effective nucleating and accelerating agent for the crystallization of PLLA, as a result, upon cooling at 1 °C/min, PLLA/0.5 %APAD had the highest onset crystallization temperature 136.4 °C and the crystallization peak temperature 132.0 °C, as well as the largest non-isothermal crystallization enthalpy 48.1 J/g. However, with increasing of APAD concentration from 0.5 wt.% to 3 wt.%, the crystallization peak shifted to the lower temperature. In contrast, for the non-isothermal cold crystallization process, the effect of APAD concentration on the crystallization behavior of PLLA was negligible. Additionally, the non-isothermal crystallization process was also depended on the cooling rates and the final melting temperature. In isothermal crystallization section, to compare with the primary PLLA, the crystallization half-time of PLLA/APAD could decrease from 254.3 s to the minimum value 29.4 s, with 0.5 wt.% APAD contents at 125 °C. Melting behavior of PLLA/APAD samples under different conditions further confirmed the heterogeneous nucleation effect of APAD for PLLA, and the appearance of the double melting peaks was attributed to the melting-recrystallization. Finally, the addition of APAD decreased the thermal stability to some extent, although APAD could not change the thermal decomposition profile of PLLA. And a drop of PLLA/APAD samples in light transmittance resulted from the double influence of the enhancement of crystallization and the opaqueness of APAD.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.