The Permeability of Waste Fiber Recycled Concrete
DOI:
https://doi.org/10.5755/j01.ms.26.2.21143Keywords:
recycled concrete, waste fibers, pore structure, fractal dimension, permeabilityAbstract
Permeability is one of the major performances for recycled aggregate concrete, which affects the durability and service life of concrete structures. In most cases, the main factor affecting the permeability of recycled aggregate concrete is the pore structure. Considering water-cement ratio, replacement rate of recycled aggregates, waste fiber length, and volume fraction of waste fibers as the design variables, pore structure and gas permeability were studied experimentally. In addition, fractal theory was here used to assess the pore structure of waste fiber recycled concrete and study the effects of pore structure on permeability. The results showed that the pore size distribution had a small impact on the permeability with the water-cement ratio and replacement rate of recycled aggregates increasing. The fractal dimension can be used to describe the complexity of the pore structure quantitatively. There is an obvious linear relationship between fractal dimension and gas permeability. The larger the pore volume fractal dimension, the better the impermeability of waste fiber recycled concrete.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.