Curing Kinetics and Mechanism Research of E44/T31 Insulation Paint
DOI:
https://doi.org/10.5755/j01.ms.25.4.22095Keywords:
epoxy resin (E44), insulating coatings, DSC, curing kinetics, reaction mechanismAbstract
Epoxy resin insulation paint was prepared with epoxy resin (E44) as binder and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by the differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was investigated by using the phenomenological method, and the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determined. The curing reaction mechanism of paint was ascertained by the dynamic temperature DSC method and IR spectroscopy (FTIR) method. The results show that the Kamal model can be used to describe the curing kinetics of epoxy resin paint, and the total reaction orders increase from 1.30 to 2.14. The two rate constants increase with the increase of the curing temperature. The activation energy is 90.5832 kJ/mol and 68.3733 kJ/mol respectively, and the pre-exponential factors are 6.521 × 1015 s-1 and 6.3807 × 109 s-1. The curing reaction of paint consists of two steps: the first step is the addition reaction of epoxy group and primary amine or secondary amine; the second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl.
Epoxy resin insulation paint was prepared with epoxy resin (E44) as binders and with proper inorganic fillers and curing agent (T31) as additives. The isothermal curing reaction process of paint was studied by differential scanning calorimetry method (DSC), and the curves of curing reaction rate versus time of paint were obtained. The curing reaction kinetics was studied by using the phenomenological method, the corresponding parameters of the n-order model, autocatalytic model and Kamal model were determined by fitting the experimental data, respectively. According to the values of R2 and the sum of square due to error (SSE), a suitable curing reaction kinetic model was determind. The curing reaction mechanism of paint was ascertained by dynamic temperature DSC method and IR spectrogram (FTIR) method. The results show that the kamal model can be used to describe the curing kinetics of epoxy resin paint, the total reaction orders increase from 1.30 to 2.14. The results also show that the two rate constants increase with increasing curing temperature, The activation energies are 90.5832 kJ/mol and 68.3733 kJ/mol, and the pre-exponential factor are 6.521×1015 s-1 and 6.3807×109 s-1. The curing reaction of paint in two steps, the first step is the addition reaction of epoxy group and primary amine or secondary amine. The second step is the etherification reaction of epoxy group and phenolic hydroxyl or alcoholic hydroxyl.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.