Correlation Modeling Between Peening-Induced Hardness, Residual Stress and Roughness in Case-Hardened High Strength Steels
DOI:
https://doi.org/10.5755/j02.ms.24475Keywords:
high strength steel, shot peening, hardness, residual stress, roughnessAbstract
The present paper is focused on the investigation of the correlation modeling of hardness and compressive residual stress on the surface and subsurface regions of case-hardened 18CrNiMo7-6 steels subjected to shot peening. The results exhibit that the relationship between hardness and compressive residual stress can reasonably well be approximated by an inverse linear model. The analysis suggests that the slope and y-intercept of the inverse linear trend line can be related to the compressive residual stress level and the initial material hardness, respectively. It is further revealed that the negative effect brought by the peening-induced roughness on the measurement of experimental data computed on the surface can be compensated by performing the normalization using the roughness parameter called the maximum valley height (Sv).
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.