Synthesis and Characteristics of Microencapsulated Decanol with TiO2 Shell as Composites for Cold Energy Storage

Authors

  • Yuan LIU School of Mechanical and Automotive Engineering, Zhaoqing University
  • Yang LIU Department of Industrial Automation, Guangdong Polytechnic College
  • Yanghua CHEN School of Mechatronics Engineering, Nanchang University

DOI:

https://doi.org/10.5755/j02.ms.24721

Keywords:

microencapsules, decanol, titanium dioxide, thermal properties, cold energy storage

Abstract

A novel microencapsulated phase change materials for cold energy storage was synthesised through sol-gel means using decanol as phase change material and titanium dioxide (TiO2) as encapsulated material. The micromorphology and composition of microcapsules were observed by field emission scanning electron microscope (FE-SEM), Fourier transformation infrared spectrometer (FT-IR).Using differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) thermal properties of microcapsules were characterized. Results of FE-SEM and FT-IR indicated that micro sized decanol droplets were encapsulated with TiO2 to form the well-developed core-shell structure, which was only physical coating between them. Furthermore, the chemical and thermal stability of the microcapsules were improved and the inflammability of the microcapsules was lowered using TiO2 as shell material. The DSC result of the desirable ones melt at 3.87 ℃ with a latent melting enthalpy of 61.12 J·g-1 and solidified at – 1.32 ℃ with a latent solidification enthalpy of 59.54 J·g-1. In general, the prepared microcapsules have potential for cold energy storage.

Downloads

Published

2021-11-20

Issue

Section

POLYMERS AND COMPOSITES