Effect of Rotational Speed, and Dwell Time on the Mechanical Properties and Microstructure of Dissimilar AA5754 and AA7075-T651 Aluminum Sheet Alloys by Friction Stir Spot Welding
DOI:
https://doi.org/10.5755/j02.ms.26860Keywords:
friction stir spot welding, aluminum alloy, lap joint, welding parametersAbstract
In the current study, the effects of dwell time and rotation speed on the mechanical properties and microstructure of friction stir spot welded joints of dissimilar aluminum sheet alloys were investigated. Aluminum AA5754 and AA7075-T651 alloys were selected as the work piece. The joint quality, microstructural evolution and mechanical behavior of the welded regions were considerably affected by the welding parameters. The results obtained that rotation speed and dwell time play an important role on welding quality of aluminum sheet. The microstructure images showed the dwell time and rotation speed has great effects on pin penetration and hook deformation. Maximum tensile shear load 806.3 N was produced at 1000 rpm and 2 s dwell time, while the tensile shear load reduced around 25 % with longer dwell time 5 s and high rotation speed 1400 rpm. Moreover, the welding joint microhardness was improved by the decrease of dwell time and increase of rotation speed.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.