Pollution Reduction and Carbon Reduction Technology Based on Pressure Swing Physical Adsorption Method in Power Enterprises
DOI:
https://doi.org/10.5755/j02.ms.38104Keywords:
electric power enterprises, pressure swing physical adsorption method, pollution reduction and carbon reduction, environmental governance, sustainable developmentAbstract
With the increasing global attention to environmental issues and climate change, power companies, as an important energy production sector, are facing severe challenges in reducing pollution and carbon emissions. In view of this, this study is based on the metal organic framework MIL-101(Cr), physically encapsulating metalloporphyrins and synthesizing a FeTPP@MIL-101(Cr) complex. Then, the surface characteristics and adsorption performance of the composite are evaluated, and the pressure swing physical adsorption method is introduced to achieve the goal of carbon reduction and pollution reduction. The ICP-OES loading results showed that the corresponding encapsulation amounts in MIL@-A and MIL@-B composites were 5.24% and 3.20%, respectively. Moreover, when the temperature increased from 273 K to 298 K, the adsorption capacity of all test gases on the three samples showed a decreasing trend. Under ideal atmospheric pressure conditions, the adsorption capacity of MIL@-A encapsulation for CO2 did not decrease and increased, while the adsorption capacity for N2 was relatively small, but still had a certain adsorption capacity. The above results indicate that combining the pressure swing physical adsorption method with FeTPP@MIL-101(Cr) complexes can effectively adsorb pollutants generated by power enterprises, achieve predetermined goals, and help promote clean production in power enterprises.
Downloads
Published
Issue
Section
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.