Second Harmonic Generation Based on Strong Field Enhancement in Metallic Nanostructured Surface
DOI:
https://doi.org/10.5755/j01.ms.20.4.6399Keywords:
finite-difference time-domain, Maxwell-Garnet model, nanowires, second harmonic generation, surface plasmonAbstract
Although absorption is still the primary optical property of interest, other spectroscopic techniques including optical second harmonic generation (SHG) are also used to understand anisotropic nature of nanomaterials. Benefit of SHG technique as compared with linear optical approach is that SH response is the most sensitive to surface potential changes and SH intensity mainly comes from surface/interface layers. This article reports that optical absorption spectra due to surface plasmon modes of metallic nanowires exhibit strong anisotropic absorption. Maxwell-Garnett simulation cannot fit with experimental results because of wire sizes much larger than wavelength of light, whereas finite-difference time-domain calculation can fit well with experimental findings in terms of position of photon energy of absorption peak with respect to polarization conditions.Downloads
Published
2014-12-11
Issue
Section
ELECTRONIC AND OPTICAL MATERIALS
License
The copyrights for articles in this journal are retained by the author(s), with first publication rights granted to the journal. By virtue of their appearance in this open-access journal, articles are free to use with proper attribution in educational and other non-commercial settings.